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Optimal sparsity criteria for network inference
Andreas Tj̈arnberg∗,1,2; Torbjörn E. M. Nordling∗,3; Matthew Studham1,2; Erik L.L. Sonnhammer1,2,4

Abstract—Gene regulatory network inference, i.e. determina-
tion of the regulatory interactions between a set of genes, provides
mechanistic insights of central importance to research in systems
biology. Most contemporary network inference methods rely on
a sparsity/regularization coefficient, which we callζ (zeta), to
determine the degree of sparsity of the network estimates,i.e.
the total number of links between the nodes. However, they offer
little or no advice on how to select this sparsity coefficient, in
particular for biological data with few samples. We show that an
empty network is more accurate than estimates obtained for a
poor choice ofζ. In order to avoid such poor choices, we propose
a method for optimisation of ζ which maximizes the accuracy
of the inferred network for any sparsity-dependent inference
method and data set. Our procedure is based on leave one out
cross optimisation and selection of theζ value that minimizes the
prediction error. We also illustrate the adverse effect of noise, few
samples, and uninformative experiments on network inference
and our method for optimisation of ζ. We demonstrate that our
ζ optimisation method for two widely used inference algorithms–
Glmnet and NIR–gives accurate and informative estimates of the
network structure, given that the data is informative enough.

I. I NTRODUCTION

Gene regulatory networks (GRNs) model the mechanistic
interactions between genes, giving insight into how signals
between genes are propagated through the genetic network
and how genes could respond to exogenous and endogenous
stimuli. Much work has been done on developing and eval-
uating algorithms for inference of regulatory networks from
perturbations and responses in expression data [1], [15], [13],
[21]. The primary goal is to find the structure of the network,
i.e. the interactions that exist within the set of nodes. Accurate
prediction of the observed responses is in general not sufficient
for accurate estimation of the network structure. Most con-
temporary inference methods rely on a sparsity/regularization
coefficient, which we callζ, to control the degree of sparsity
of the network estimates,i.e. the number of links between
the nodes. They however offer little or no advice on how
to select this sparsity coefficient, even though it typically is
crucial for accurate estimation of the structure. In particular,
the low number of samples encountered in biological data sets
is problematic and makes it unclear if classical model selection
and cross validation strategies work. We therefore investigated
if the optimal ζ value can be found based on the prediction
error for data with a low number of samples and as a result
propose a method for optimisation ofζ which maximizes the
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accuracy of the inferred network for a given inference method
and data set. We apply our method to threein silico data
sets with varying information content and demonstrate that
our method works well when the data is informative enough.

By selecting the sparsity coefficient, one in general de-
termines the trade off between accuracy of data prediction
and model complexity. Classical model selection criteria,such
as AIC, BIC, and cross validation, have long been studied
and shown to under certain conditions perform a good trade
off, in particular, when the number of samples is large and
the model is used for data prediction [26]. These classical
methods have in a few studies been used for selection of
the regularization coefficient during the past decade, including
applications to biological data [9], [29], [19], [11], [27], [23],
[5]. The BIC is in [29], [23], [19] shown to be favorable
over the other criteria tested in their study, while [27] found
selection based on minimization of the prediction error in
cross validation and bootstraping to be favorable over AIC
and BIC. Cross validation is in [11], [2] used for selection
of the regularization coefficient in LASSO, but they instead
chose the value corresponding to the sparsest model within one
standard error from the minimum to decrease the number of
false positives. Selection of the sparsity coefficient in network
inference is only studied in [23].In vivo data is in [2] used
to infer the GRN of Halobacterium and they selectζ, but the
”true” network is unknown and the performance can therefore
not be properly evaluated.In silico data from the DREAM4
challenge is in [23] used for method evaluation, but they
do not consider the signed topology that we are interested
in. Networks with 100 genes were used to generate their
data, simulating 100 multifactorial steady-state perturbation
experiments. We consider a similar network inference case but
use a small network and systematically vary data propertiesto
gain insight on how to selectζ for three different inference
algorithms. We focus on the relation between the prediction
error and topological accuracy in network inference from data
with few samples and do not therefore consider rules that
make a specific trade off between predictive ability and model
complexity, such as AIC and BIC.

The use of simulated data from gold standard networks
for evaluation of network inference algorithms is today stan-
dard. Severalin silico network and data generating software
programs have therefore been created [14], [25], [22]. These
tools use varying modeling approaches and biological mech-
anisms to simulate biological networks and network motifs.
Data sets based on simpler directly generated linear ordinary
differential equation (ODE) models have also been used in
benchmarking [1]. For simplicity and control of network and
data properties, we here use a linear ODE model for data
generation.
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II. PROBLEM DESCRIPTION

Throughout this paper we consider a system that can be
approximated as a system of first order linear ODEs:

ẋi(t) =
∑N

j=1 aijxj(t) + pi(t)− fi(t)

yi(t) = xi(t) + ei(t)
(1)

where the state vectorx(t) = [x1(t), x2(t), . . . , xN (t)]T

represent actual mRNA expression changes relative to the
initial state of the system. The vectorp(t) = [p1(t),
p2(t), . . . , pN (t)]T is the desired or measured perturbation
that differs from the applied one by the noisef(t) and
y(t) = [y1(t), y2(t), . . . , yN (t)]T is the measured response
that differs from the expression changes by the noisee(t).
The parametersaij of the interaction matrix describes the
influence of genej on genei. A positive value represents
an activation, while a negative value represents an inhibition.
The relative strength of the interaction is given by the value
of the parameter. We make the common assumption that only
steady state data is recorded and write the system in matrix
notation as

Y = −A−1P +A−1F +E. (2)

HereY is our steady state expression matrix after applying
the perturbationsP andA is the interaction matrix. This type
of linear data model has previously been used when inferring
gene regulatory networks ine.g. [12], [20], [18], [24], [17].
In this case the goal of network inference corresponds to
inference of the structure of the interaction matrixA.

To obtain sparse network models a variety of methods that
either directly or indirectly places a weight or constrainton
the model complexity in terms of the number of non-zero
parametersaij have been developed in several fields [16],
[10], [7], [3], [26]. The idea is to exclude less influential
interactions while keeping the most influential ones in terms
of ability to predict experimental observations by penalizing
small non-zero parameters. To accomplish this, a method spe-
cific sparsity/regularization coefficient, which we here denote
ζ̃ and later standardize such thatζ ∈ [0, 1], is used in most
methods to set the weight or constraint on the number of links,
like in the LASSO method [28]

Âreg(ζ̃) = argmin
A

||AY + P ||l2 + ζ̃||A||l1 , (3)

which is one of the most well known ones. Several conditions
for near ideal model selection have been established for certain
methods, in particular given a suitable choice ofζ [4], [10],
[30], but how to in general choseζ based on data sets with a
low number of samples is still an open problem. We therefore
here study how the selection ofζ affects the network estimate
for data sets of the type common in Systems biology. The idea
is to through numerical simulations and analysis investigate if
an efficient method for selection ofζ that can be wrapped
around implementations of existing inference methods could
be developed. In order to be efficient the method must select a
ζ value such that no network estimate that is structurally more
similar to the ”true” network exists for any other choice ofζ
for the particular inference method. As a result we propose
such a method.

III. M ETHODS

A. Pre-treatment of data

A model is only useful for prediction of experiments similar
to the ones it was estimated from, so the validation set should
only contain experiments that are linearly dependent on the
experiments in the training set.

We therefore measure the degree of linear dependence
between an experimentyk and the ones in the training set
Y t 6=k as

ηy
k
, ||Y T

t 6=kyk||1 (4)

and similarly for the perturbations. All directions of the system
are sufficiently excited in the examples that we provide later
on and we therefore use the smallest singular valueσN as
our limit on η. The index set of the validation experiments is
hence

V ,
{

k|ηy
k
≥ σN (Y ) andηp

k
≥ σN (P )

}

. (5)

The sparsity of the estimated network for a specificζ value
depends both on the data and the algorithm used. To simplify
the comparison between different data sets and algorithms,
we therefore standardizeζ, such that an empty network is
obtained forζ = 1 and a full network forζ = 0. For Glmnet
and LSCO the standardizedζ is equal to the actual̃ζ divided
by the smallest̃ζ, such that the network estimatêAreg = 0

for all different training data sets{Y t 6=k,P t 6=k}. For NIR the
standardizedζ is (N − ζ̃)/N .

B. Leave one out cross optimisation

When few experiments exist, use of the whole data set to
predict the network might be an attractive option but it would
in general lead to over fitting of the parameters to noise. As
the number of observations tend to be small, we employ a
leave one out cross optimisation (LOOCO) scheme, where
each experimentk that fulfills (5) in turn is left out and the
remainingt 6= k experiments are used to estimate the model
Â. This model is then after re-estimation of the parameters
used to predict the response inkth experiment.

Introduction of a term penalizing model complexity unfor-
tunately also affects the estimate of most non-zero parameters,
biasing them away from the value minimizing the prediction
error. Though a number of approaches to reduce the bias have
been constructed, seee.g.[9], [8], [19], none of them removes
it completely in all cases and many inference methods do
not utilize these approaches. We therefore for all models re-
estimate the non-zero parameters using a constrained least
squares (CLS) method solving the following optimization
problem

Â = argmin
A

∑

diag(∆TR∆) (6a)

s.t.∆ = AY + P , (6b)

R =
(

Âinit Cov[y]Â
T

init +Cov[p]
)−1

, (6c)

signA = sign Âreg. (6d)

Here Âinit is equal to the estimate given by the network
inference method̂Areg if the network inference method gives
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an estimate that can be used for prediction, otherwise the
ordinary least squares estimateÂols = −PY † is used. Here†

denotes the Moore-Penrose generalized inverse,Cov[y] the
covariance matrix of the response in an experiment or an
estimate of it,Cov[p] the covariance matrix of the perturbation
in an experiment or an estimate of it, andsign the signum
function. This is a simplification of the method presented in
[18], where the covariance is assumed to be identical in all
experiments and theirl1 constraint is replaced by constraining
the structure to be identical to that of the estimate given
by the network inference method for the investigatedζ̃. It
is based on the relation between weighted least squares and
maximum likelihood estimators clear that the solution of this
optimization problem is close to the maximum likelihood esti-
mate under the structural constraints, given that the errors are
normally distributed with the assumed covariance matricesand
Âinit is sufficiently close to the final estimate. Consequently,
the estimate is close to the the best linear unbiased estimate
under the structural constraints, which is equal to the minimum
variance unbiased estimate for normally distributed errors.
This re-estimation therefore enables us to obtain unbiasedesti-
mates of the non-zero parameters that minimizes the prediction
error. We solve this convex optimisation problem using CVX
(cvxr.com/cvx) in Matlab (www.mathworks.com).

C. Selection of optimalζ

The prediction error of all network estimatesÂ obtained by
the LOOCO for a specificζ is evaluated by the mean residual
sum of squares (RSS)

RSS(ζ) ,
1

#V

∑

k∈V

||ŷk − yk||
2. (7)

Here ŷk = −Â
−1

pk is the predicted response and#V is
the cardinality of the index set of the validation experiments
determined in (5).

We select the largestζ value that minimizes the mean RSS

ζ∗ , max arg min
ζ∈[0,1]

RSS(ζ). (8)

We later demonstrate that this selection gives efficient esti-
mates for sufficiently informative data.

D. Performance evaluation

We asses the accuracy of the network estimates by compar-
ing their structure to the ”true” networǩA used for generation
of the in silico data. Both the existence and sign of each link is
equally important for us, so for each estimatedÂ we measure
the similarity of signed topology (SST)

SST,
1

N2

N
∑

i=1

N
∑

j=1

(sign(âij) == sign(ǎij)) . (9)

The estimate corresponding to theζ value at which the SST
is maximized is most similar to the ”true” network for the
inference method,i.e. the efficient estimate.

E. Network inference algorithms

To demonstrate the proposed workflow we choose two
commonly used network inference algorithms, Glmnet[11] and
NIR[6]. Glmnet is a fast linear regression method that uses
LASSO, ridge regression or a combination of them, but we
only utilize LASSO. NIR is a linear regression method that
uses a discrete regularisation parameter,k, representing the
number of regulators per gene and does an exhaustive search
of all k combinations. For comparison, we also use ordinary
least squares with a cutoff (LSCO) to set all links that are
weaker than the threshold̃ζ to zero

âij ,

{

aolsij if aolsij ≥ ζ̃
0 otherwise

with Aols = −PY †. (10)

F. Data sets

To be able to control and systematically vary the properties
of the data, as well as evaluate the performance by comparing
to the ”true” network, we constructed a network with 10 nodes
and 25 links (Figure 5 and Table 1) and used it to generate
in silico data. We want to simulate steady-state perturbation
experiments of the type previously performedin vivo for
inference of a ten gene network of the Snf1 signalling pathway
in S. cerevisiae[20] and have therefore tuned the properties
such that the network is biologically plausible. It is sparse,
each gene has a negative self-loop representing mRNA degra-
dation, the digraph forms one strong component, the degree
of interampatteness is 145, it is stable,i.e. all eigenvalues
are negative, and the time constants of the system are in the
range 0.089 to 12 [24]. We used the network to generate
data sets with different information content by varying the
perturbations and noise that is added to the simulated response.
We here present results for three data sets with 20, 15, and
10 experiments with SNR 35, 7, 1.5, respectively. The same
white Gaussian noise realization obtained byrandn in Matlab
is after scaling of the variance added to the response in all
three data sets. The perturbations were designed to counteract
the intrinsic signal attenuation such that all directions of the
system are excited and the singular values of the response
matrices in all cases are in the range 0.77 to 1.2.

IV. RESULTS AND DISCUSSION

We have investigated the effect of the sparsity coefficientζ
on network inference using three different algorithms: Glmnet,
NIR, and LSCO, as well as the performance of the proposed
method to identify an optimalζ value. The inference was
done for 1000 ζ values covering the range from a full
network to an empty one and we present the fraction of links
(FOL), similarity of signed topology (SST), and residual sum
of squares (RSS) of the estimated networks in Figure 1-4.
The three data sets differ only in terms of the information
content. We therefore call the most informative data set with
20 experiments and SNR 35 the ”informative data set”, the
one with 15 experiments and SNR 7 the ”partly informative
data set”, and the one with 10 experiments and SNR 1.5
the ”uninformative data set”. Using Glmnet and LSCO it is
possible to recover the ”true” network for certainζ values with
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Fig. 1: Performance of Glmnet with constrained least squares
(CLS) as a function ofζ. Blue curve is the mean fraction of
links (FOL), green curve the mean similarity of signed topol-
ogy (SST) and red curve the mean residual sum of squares
(RSS). Informative data with 20 experiments (A), partly-
informative data with 15 experiments (B) and uninformative
data with 10 experiments (C). The best estimates marked with
� and minimum RSS marked with©.

the informative data set (Figure 1 A and Figure 3 A), while
none of the three algorithms can recover the ”true” network
for any ζ value with the other two data sets (Figure 1-3 B
& C). It is based on the RSS possible to select theζ value
that gives the best network estimate for the informative and
partly informative data sets (Figure 1-3 A & B), but not for
the uninformative data set (Figure 1-3 C).

All curves represents mean values over all the network
estimates obtained by the leave one out cross optimisation
(LOOCO) for eachζ value. An SST of one implies that
all the network estimates contain the same links with same
signs as the ”true” network, and zero that they are completely
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Fig. 2: Performance of NIR with CLS as a function ofζ. For
explanations see Figure 1.

different. The shaded green area marks the region in which
the network estimates are more similar to the ”true” network
than an empty network. The lower boundary of this region
is in other words defined by the SST of the empty network,
and any network estimates with lower SST provide essentially
no mechanistic understanding of the system. Previous works
have typically used random networks with the correct number
of links to define a lower boundary on when an inference
method is useful, seee.g.[23], but we use the empty network,
since even random networks with both the correct number of
links and fraction of positive and negative ones on average
have a lower SST for sufficiently sparse networks, like ours
(see supplemental). The shaded red area is bounded by the
mean RSS for prediction of the responses in the validation set
by the empty networkA = 0 and the least squares estimate
A = −PY †. The lower boundary is merely included for
visual comparision to the least squares estimate, while any
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Fig. 3: Performance of LSCO with CLS as a function ofζ.
For explanations see Figure 1.

network estimate with a larger RSS than the upper bound
essentially is useless for data prediction.

By studying the green SST curve for the three methods
in Figure 1-3 it is obvious that an efficient network estimate
only is obtained for a narrow range ofζ values. To get a
network estimate with an SST within 5% of the best one for
the informative data,ζ must be selected within a range of
0.0078 (Glmnet),0.1 (NIR), and0.013 (LSCO). This confirms
previous reports stating that careful selection ofζ is essential
to obtain a network estimate with a structure similar to that
of the ”true” network [23].

By comparing the results obtained for the three data sets,
the adverse effect of noise and few samples is seen. The SST
of the best estimate decreases with decreasing information
content for all three methods as expected (Figure 1-3). Note
that each gene will have the same indegree in the estimates
given by NIR, while one gene has indegree 4, 3 genes indegree
3 and the remaining ones indegree 2 in our network (Figure 5),

so NIR cannot for anyζ or data set give an estimate with
SST one. This explains why the best NIR estimate for the
informative data differs from the ”true” network and why
the SST of the best estimate is identical for the informative
and partly informative data sets. For all three methods the
RSS of the estimates increases with decreasing information
content for mostζ values. The RSS is for allζ value larger
than the RSS of an empty network for the uninformative data
set, illustrating that aζ value giving efficient estimates for
mechanistic inference cannot be found based on the RSS when
the number of experiments or SNR is too low.

It is well known that regularization introduces a bias in the
parameter estimates, and several methods intended to decrease
it have been published [9], [8], [19]. The effect of this biason
the RSS is in our figures best seen by comparing the red RSS
curve in Figure 1 A and Figure 4 A for the informative data set.
The RSS curve generated after re-estimation of the non-zero
parameters using constrained least squares (CLS) in Figure1
A has its minimum near the optimalζ, while the minimum in
Figure 4 A is located at a smallerζ value, corresponding to an
estimate that has a lower SST than an empty network. In order
to find the optimalζ based on the minimum RSS, this bias
must be removed. We have chosen to do such a re-estimation
of the non-zero parameters, since many network inference
methods with this bias exist and we want to find a method
for selection ofζ that can be wrapped around any network
inference method that depends on a sparsity coefficient. In
[11], [2] the previouly mentioned one standard deviation rule
is used to in part compensate for the effect of bias.

Only linearly dependent experiments should be included
in the validation data set to avoid predicting the outcome of
experiments that the training data set lacks information about.
Inclusion of such experiments in general increases the RSS
for almost all ζ values and moves the minimum away from
the efficient estimate. This is for the informative data set seen
by comparing the RSS when all experiments are included in
the validation data set used during LOOCO (Figure 4 B) and
when only the experiments inV (5) are included (Figure 1 A).
The RSS of the former is at least three orders of magnitudes
larger in the interestingζ range.

By combining selection of linearly dependent experiments
and unbiased re-estimation of parameters it is for sufficiently
informative data based on the RSS of the validation data set
possible to chose aζ value close to the optimal one, at least
for the three inference algorithms that we have investigated
here (Figure 1-3). The proposedζ selection method hence op-
timizes the accuracy of the inferred network, with a tendency
towards having more false positives than negatives when the
”true” network cannot be found. This tendency is best seen
for NIR. The ”true” network has four links on one row, hence
all NIR estimates for aζ larger than 0.6 lack at least one true
link, which increases the RSS and prevents us from finding
the optimalζ. Instead our method identifies the largestζ value
at which the estimate contains all links present in the ”true”
network and some false positives.
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Fig. 4: Performance of Glmnet without CLS as a function of
ζ for the informative data (A) and with CLS when all experi-
ments are included in the validation set (B). For explanations
see Figure 1.

V. CONCLUSION

Network estimates that are structurally close to the ”true”
network are only obtained within a narrow range ofζ values
and estimates that are more different than the empty network
are obtained for poor choices. The range of good estimates
depends on both the algorithm and data set, which makes
data based selection ofζ imperative. We demonstrate that
the ζ value yielding highly accurate network estimates can
be determined by minimization of the prediction error in a
leave one out cross optimization scheme for data with only
1.5 to 2 times as many experiments as variables.

We also demonstrate the adverse effect of noise and too few
samples, and how these problems can be detected based on the
residual sum of squares becoming larger than for an empty
network. Correct selection ofζ requires that non-informative
data samples are excluded from the validation set, as well
as re-estimation of biased parameters. We therefore include
these two steps in the proposed method forζ optimization. The
proposed method can be wrapped around almost any regula-
tory network inference method and works well for sufficiently
informative data, thus improving the workflow from data to
network models that provide a better understanding of the
biological mechanism.
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Johansson, Torbjörn E M Nordling, Bodil Nordlander, Chris Sander,
Peter Gennemark, Keiko Funa, Björn Nilsson, Linda Lindahl, and
Sven Nelander,Network modeling of the transcriptional effects of copy
number aberrations in glioblastoma., Molecular systems biology7
(2011), no. 486, 486.

[18] A Julius, M Zavlanos, S Boyd, and G J Pappas,Genetic network
identification using convex programming., IET systems biology3 (2009),
no. 3, 155–166.

[19] Heng Lian,Shrinkage Tuning Parameter Selection in Precision Matrices
Estimation, Journal of Statistical Planning and Inference141 (2009),
no. 8, 2839–2848.

[20] David R Lorenz, Charles R Cantor, and James J Collins,A network
biology approach to aging in yeast., Proceedings of the National
Academy of Sciences of the United States of America106(2009), no. 4,
1145–50.

[21] Daniel Marbach, Robert J Prill, Thomas Schaffter, Claudio Mattiussi,
Dario Floreano, and Gustavo Stolovitzky,Revealing strengths and
weaknesses of methods for gene network inference., Proceedings of the
National Academy of Sciences of the United States of America107
(2010), no. 14, 6286–91.

[22] P. Mendes, W. Sha, and K. Ye,Artificial gene networks for objective
comparison of analysis algorithms, Bioinformatics19 (2003), no. Suppl
2, ii122–ii129.



7
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S.6. SUPPLEMENTARY MATERIAL

We here provide additional details, in particular, about the network used for data generation and simulated data. This
information makes it possible to reproduce our figures. We also give additional comments on the results for interested readers.

A. In silico data sets and network properties

The gene regulatory network that we use to generate thein silico data is shown in Figure 5 and the strength of all interactions
in Table 1. The true networǩA has10 states, each representing the mRNA abundance of a gene. The states form a stable
system with self-degradation of each mRNA. One path throughall states exists, which means that it consists of one strong
component.

We generated the responses in Matlab using (S2), withF = 0 andE being white Gaussian noise with the variance given
in Table 2. The perturbation matricesP and obtained response with noiseY are given in Table 5a-tab:noneinf-expr. Further
properties of the data sets are shown in Table 2.

B. Network inference and selection ofζ

The range of the actual̃ζ values used in the three algorithms is given in Table 3. The RSS, FOL, and SST for all three
algorithms and data sets without re-estimation of the modelparameters using CLS is shown in Figure 6-8. The RSS, FOL, and
SST is for Glmnet both with and without CLS when all experiments are included in the validation set shown in Figure 9. By
comparing the RSS in this figure to that for inclusion of linearly dependent experiments one sees the importance of selection
of validation experiments. To make it possible to asses the benefits of using cross optimisation we also include Figure 10and
11 where all experiments were used for training and then the mean RSS over all experiments calculated. The minimum RSS
occurs in this case for full or almost full network and the parameters are over fitted to the noise in the data.

C. Similarity of signed topology of random networks

Previous works have typically used random networks with thecorrect number of links to define a lower boundary on when
an inference method is useful, seee.g. [23], but we use the empty network, since even random networks with both the correct
number of links and fraction of positive and negative ones onaverage have a lower SST for sufficiently sparse networks, like
ours. Based on Monte Carlo simulations in Matlab we found that the mean and median of SST is 0.6. And if we make all all
diagonal elements negative in the random networks then it increases to 0.74, while it is 0.75 for an empty network.

D. Constrained least squares

To account for the fact that that our estimated network does not in all cases have a full rank and the equation to the
minimisation problem presented for CLS can not be solved we added in these cases a small regularisation term ofℓ = 10−15

to the correction term.

E. minimum RSS for informative data

It can be observed in the Figure 1 that the minimum RSS is slightly to the left of the optimal point. This can be explained
by the fact that in the informative data (Figure 5b) validation set, node G is not perturbed. Therefore the algorithm can remove
links in the “true” network with small effect on the prediction error.
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Fig. 5: Network structure

TABLE 1: Network interactions

Source Node Interaction Type Target Node Connectivity Interaction Strength
A Inhibition A -0.507 0.507
H Activation A 0.67 0.67
B Inhibition B -0.943 0.943
C Activation B 1.157 1.157
C Inhibition C -7.535 7.535
G Inhibition C -0.5 0.5
H Activation C 2.876 2.876
D Inhibition D -11.22 11.22
I Activation D 0.472 0.472
J Activation D 0.995 0.995
C Activation E 1.087 1.087
E Inhibition E -0.99 0.99
A Inhibition F -0.1 0.1
F Inhibition F -0.842 0.842
F Activation G 0.1 0.1
G Inhibition G -0.085 0.085
B Inhibition H -0.279 0.279
D Activation H 4.171 4.171
H Inhibition H -2.176 2.176
J Inhibition H -0.25 0.25
E Activation I 0.148 0.148
G Inhibition I -0.05 0.05
I Inhibition I -0.584 0.584
A Activation J 0.181 0.181
J Inhibition J -0.808 0.808
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TABLE 2: Data set properties: Signal to noise ratio, SNR, noise variance,λ and smallest singular valuesσN (Y ) andsigmaNP ,
and largest singular valuesσ1(Y ) andsigma1P

Informative Partly informative Uninformative
# experiments 20 15 10
SNR 35 7 1.5
λ 8.7224e-06 2.8399e-04 0.0049
σN (Y ) 7.8284e-01 7.7531e-01 6.5951e-01
ΣN (P ) 8.4024e-02 8.3036e-02 8.4392e-02
σ1(Y ) 1.2357e+00 1.2283e+00 1.3784e+00
Σ1(P ) 1.1998e+01 1.1986e+01 1.2041e+01

TABLE 3: ζ conversion

Informative (min/max) Partly informative (min/max) Uninformative (min/max)
Glmnet 2.3144e-06/2.3144 2.9644e-06/2.9644 3.4851e-06/3.4851
LSCO 1.1292e-05/11.2923 1.1631e-05/11.6308 1.3812e-05/13.8121
NIR 10/0 10/0 9/0
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TABLE 4: Optimal SST and95% of optimal SST and correspondingζ values, RSS, FOL, SST and Matthews correlation
coefficient (MCC). -5% corresponds to smallestζ closest to 5% lower than optimal SST. +5% corresponds to largestζ closest
to 5% lower than optimal SST.

ζ RSS FOL SST MCC
Glmnet info
-5% 0.00280187 0.0128184 0.301667 0.948333 0.878854
optimal 0.00473888 0.0445398 0.251667 0.996667 0.991283
+5% 0.0105688 0.436417 0.199167 0.9475 0.859023
Glmnet partly
-5% 0.0102804 92.6268 0.286 0.86 0.646725
optimal 0.0393183 1953.2 0.162 0.904 0.736548
+5% 0.0579112 1.18043e+06 0.12 0.866 0.625866
Glmnet uni
-5% 0.0177112 472.361 0.262 0.784 0.490044
optimal 0.0337698 2128.13 0.2 0.826 0.556872
+5% 0.0849042 1268.1 0.104 0.782 0.319335
LSCO info
-5% 0.002688 0.00014431 0.303333 0.946667 0.875584
optimal 0.0045463 0.000128145 0.254167 0.994167 0.984788
+5% 0.0157833 0.0127847 0.193333 0.943333 0.847922
LSCO partly
-5% 0.0102804 0.192458 0.308 0.862 0.668126
optimal 0.0238989 2.78229 0.21 0.908 0.749516
+5% 0.0563314 3.77737 0.144 0.86 0.61867
LSCO uni
-5% 0.0305386 2991.37 0.266 0.776 0.431465
optimal 0.0613591 5835.49 0.124 0.796 0.389913
+5% 0.559081 0.894621 0.008 0.758 0.139262
NIR info
-5% 0.7 0.00735917 0.3 0.93 0.831522
optimal 0.8 0.0168469 0.2 0.95 0.866025
+5% 0.9 0.572672 0.1 0.85 0.57735
NIR partly
-5% 0.7 0.225786 0.3 0.906 0.771048
optimal 0.8 3.64408 0.2 0.95 0.866025
+5% 0.9 0.507342 0.1 0.85 0.57735
NIR uni
-5% 0.7 138.251 0.294 0.784 0.469483
optimal 0.8 3.95052 0.196 0.85 0.576567
+5% 0.9 2.18126 0.098 0.848 0.570821
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TABLE 5: Informative data set. Bold numbers indicate samples in validation set.

(a) Expression matrix,Y

1 2 3 4 5 6 7 8 9 10
η 1.30 1 0.89 1.24 1.65 0.40 1.38 0.04 1.40 1.28
A 0.0823 0.0497 0.0391 -0.2440 0.6598 -0.1020 -0.2752 -0.0047 -0.5339 -0.0663
B -0.5522 0.0176 0.0159 -0.0959 0.0124 0.6028 -0.0991 -0.0036 -0.0048 -0.0264
C -0.4447 0.0153 0.0152 -0.0756 0.0119 -0.7857 -0.0815 -0.0071 -0.0038 -0.0232
D 0.0003 -0.6874 -0.5500 -0.1014 0.0167 -0.0024 -0.1193 -0.0018 -0.0113 -0.0354
E -0.4907 0.0191 0.0156 -0.0756 0.0048 0.0027 -0.0853 -0.0034 -0.0097 -0.0233
F -0.0084 -0.0069 -0.0038 0.0290 -0.0736 0.0171 0.0343 -0.0022 0.0647 0.0020
G -0.0113 -0.0036 -0.0076 0.0360 -0.0962 0.0154 0.0410 0.0023 0.0734 0.0098
H 0.0602 0.0326 0.0289 -0.1864 0.0025 -0.0802 -0.2073 -0.0009 -0.0021 -0.0510
I -0.1226 0.0023 -0.0019 -0.0288 0.0139 0.0076 -0.0296 -0.0007 -0.0054 -0.6854
J 0.0243 0.0066 0.0063 -0.0499 0.1478 -0.0155 -0.0588 0.0016-0.1163 -0.0101

11 12 13 14 15 16 17 18 19 20
η 1.00 1.08 0.89 0.29 0.03 0.76 0.82 1.32 0.86 1.25
A 0.1028 -0.0050 -0.0036 -0.0014 0.0018 0.0341 0.0690 0.0710-0.1401 -0.0203
B -0.5205 0.0686 0.0422 0.0010 -0.0002 0.0120 0.0272 0.0210 -0.0012 -0.0128
C -0.4211 0.0561 0.0337 -0.0023 -0.0006 0.0164 0.0177 0.0242-0.0050 -0.0061
D 0.0055 0.0051 -0.0013 -0.0032 0.0055 -0.4400 0.0902 0.0325-0.0011 -0.0078
E 0.5455 0.0589 0.0433 0.0029 0.0005 0.0063 0.0181 0.0215 -0.0055 -0.6095
F -0.0038 -0.0060 -0.0024 -1.0014 -0.0018 -0.0036 -0.0070 -0.0108 0.0159 -0.0008
G -0.0162 -0.8036 -0.5762 0.0122 -0.0058 -0.0048 -0.0116 -0.0124 0.0192 0.0045
H 0.0812 -0.0090 -0.0043 0.0008 0.0042 0.0270 0.0475 0.0557 0.9575 -0.0168
I 0.1383 0.0888 0.0576 0.0025 -0.0016 -0.0003 0.0096 0.6985 -0.0059 -0.1575
J 0.0193 -0.0018 -0.0048 -0.0042 -0.0029 0.0065 0.9823 0.0162 -0.0293 -0.0098

(b) Perturbation matrix,P

1 2 3 4 5 6 7 8 9 10
η 42.14 123.76 109.34 22.62 0.32 56.64 25.09 0.07 0.28 0.16
A 0 0 0 0 0.3300 0 0 0 -0.2660 0
B 0 0 0 0 0 1.4770 0 0 0 0
C -3.5550 0 0 0 0 -5.6840 0 0 0 0
D 0 -7.7710 -6.1450 -1.1230 0 0 -1.2540 0 0 0
E 0 0 0 0 0 0.8610 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0
H 0 2.9740 2.3550 0 0 0 0 -0.0080 0 0
I 0 0 0 0 0 0 0 0 0 -0.3960
J 0 0 0 0 0 0 0 0 0 0

11 12 13 14 15 16 17 18 19 20
η 42.29 0.01 0.01 0.01 0.00 95.12 0 0.16 50.58 1.11
A 0 0 0 0 0 0 0 0 -0.7150 0
B 0 0 0 0 0 0 0 0 0 0
C -3.4010 0 0 0 0 0 0 0 -2.7680 0
D 0 0 0 0 0 -4.9700 0 0 0 0
E 0.9960 0 0 0 0 0 0 0 0 -0.5980
F 0 0 0 -0.8440 -0.0030 0 0 0 0 0
G 0 -0.0690 -0.0490 0.1010 0 0 0 0 0 0
H 0 0 0 0 0 1.9040 0 0 2.0940 0
I 0 0 0 0 0 0 0 0.4040 0 0
J 0 0 0 0 0 0 0.7810 0 0 0
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TABLE 6: Partly informative data set. Bold numbers indicatesamples in validation set.

(a) Expression matrix,Y

1 2 3 4 5 6 7 8 9 10
η 0.85 0.59 1.07 0.55 1.25 0.53 0.22 0.33 0.32 0.89
A -0.0979 0.0536 -0.1061 -0.1752 0.9245 0.0349 0.0483 -0.0076 -0.0830 -0.0199
B -0.0117 -0.0356 -0.0447 0.9847 0.0194 0.0275 0.0111 0.0718-0.0196 0.0905
C -0.0243 -0.0470 -0.0448 -0.0599 0.0152 -0.0100 0.0068 0.9589 -0.0206 0.0352
D -0.3855 0.0618 0.6442 -0.0018 0.0203 0.0847 0.0432 0.0172 -0.0101 -0.0393
E -0.0314 -0.0356 -0.0273 -0.0655 0.0107 0.0257 -0.0114 -0.0156 -0.0215 0.0558
F 0.0294 -0.0268 0.0170 0.0423 -0.1093 -0.0173 -0.0224 -0.0108 0.0235 -0.0043
G 0.0110 -0.0013 0.0284 0.0435 -0.1399 -0.0071 0.0228 0.00340.0072 -0.7398
H -0.0594 -0.9901 -0.0851 -0.1473 0.0375 0.0260 0.0076 -0.0033 -0.0599 -0.0224
I 0.0162 -0.0121 -0.0146 -0.0139 0.0009 0.0096 -0.0027 -0.0372 0.0192 0.0563
J 0.0094 -0.0078 -0.0050 -0.0213 0.1935 0.9792 0.0084 0.0041-0.0332 -0.0020

11 12 13 14 15
η 0.87 0.79 0.36 0.84 1.03
A 0.0153 -0.0417 0.0339 0.1303 -0.0320
B 0.0433 0.0025 -0.0048 0.0602 0.0206
C 0.0425 -0.0198 -0.0364 0.0487 -0.0237
D 0.0216 -0.0140 -0.0096 0.0478 -0.6244
E 0.0435 -0.9767 0.0197 0.0406 -0.0032
F -0.0102 0.0157 0.9530 -0.0462 0.0297
G -0.6193 0.0074 -0.0150 0.0225 -0.0012
H 0.0127 -0.0342 -0.0093 0.0594 -0.0516
I 0.0993 -0.2368 -0.0346 0.9632 -0.0174
J -0.0144 -0.0002 0.0213 0.0135 -0.0119

(b) Perturbation matrix,P

1 2 3 4 5 6 7 8 9 10
η 79.64 35.61 106.09 1.08 0.32 0 2.61 21.86 1.26 0.01
A 0 0.6830 0 0 0.4640 0 0 0 0 0
B 0 0 0 0.9700 0 0 0 -1.1070 0 0
C 0 2.6300 0 0 0 0 0 7.5150 0 0
D -4.6250 0 7.4050 0 0 0 0.1370 0 0 0
E 0 0 0 0 0 0 0 -1.0940 0 0
F 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 -0.0630
H 1.5830 -2.1560 -2.9410 0 0 0 0 0 -0.1370 0
I 0 0 0 0 0 0 0 0 0 0
J 0 0 0 0 0 0.7800 0 0 0 0

11 12 13 14 15
η 0.01 1.03 0.01 0 102.69
A 0 0 0 0 0
B 0 0 0 0 0
C 0 0 0 0 0
D 0 0 0 0 -7.0150
E 0 -0.9380 0 0 0
F 0 0 0.8300 0 0
G -0.0550 0 -0.0990 0 0
H 0 0 0 0 2.5430
I 0 0 0 0.5640 0
J 0 0 0 0 0
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TABLE 7: Uninformative data. Bold numbers indicate samplesin validation set.

(a) Expression matrix,Y

1 2 3 4 5 6 7 8 9 10
η 1.03 0.95 0.92 0.72 0.80 0.94 1.51 0.74 0.66 0.93
A 0.0378 0.0734 0.9885 0.0433 -0.0320 0.0070 0.0231 -0.0459 0.1084 -0.0635
B 0.1283 -0.7536 -0.0692 -0.0408 -0.0260 0.0302 0.0388 0.1331 -0.0277 0.0137
C -0.1594 0.1012 0.0633 -0.0427 0.0151 -0.0652 0.0686 0.0520-0.9847 0.0560
D 0.0606 -0.0004 0.1340 -0.0570 0.0113 0.0088 0.1206 0.0668 0.1120 -0.8205
E 0.0218 0.1054 0.0485 -0.1714 -1.0195 0.0217 0.1413 0.0182 -0.0470 -0.0413
F -1.0849 -0.0344 -0.0390 0.1035 0.0008 0.0998 -0.0058 -0.0983 0.0480 0.0111
G -0.0221 -0.0322 -0.0804 0.0256 -0.0081 -0.0636 -0.1189 -1.0997 0.0575 -0.0082
H 0.0241 0.2321 -0.0106 0.9413 0.0254 0.0774 0.0233 0.0324 -0.0107 -0.1229
I 0.2508 0.1151 0.0355 0.1052 -0.1663 -0.0094 0.9040 0.0914 0.0177 -0.0292
J 0.1948 0.1374 0.1555 -0.1247 0.0725 1.0579 0.1877 -0.0144 -0.0801 -0.1224

(b) Perturbation matrix,P

1 2 3 4 5 6 7 8 9 10
η 0.01 1.08 0.32 29.19 1.03 0 0 0.01 21.83 9.16
A 0 0 0.4700 -0.6760 0 0 0 0 0 0
B 0 -0.9700 0 0 0 0 0 0 1.1100 0
C 0 0 0 -2.6140 0 0 0 0 -7.5440 0
D 0 0 0 0 0 0 0 0 0 -11.2510
E 0 0 0 0 -0.9410 0 0 0 1.0950 0
F -0.8360 0 0 0 0 0 0 0 0 0
G 0.1000 0 0 0 0 0 0 -0.0850 0 0
H 0 0 0 2.1740 0 0 0 0 0 4.2120
I 0 0 0 0 0 0 0.5660 0 0 0
J 0 0 0 0 0 0.7790 0 0 0 0
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Fig. 6: Performance of Glmnet without CLS as a function ofζ. Blue curve is the mean fraction of links (FOL), green curve
the mean similarity of signed topology (SST) and red curve the mean residual sum of squares (RSS). Informative data with 20
experiments (A), partly-informative data with 15 experiments (B) and uninformative data with 10 experiments (C). The best
estimates marked with� and minimum RSS marked with©.



18

lo
g(

R
S

S(
Â
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Fig. 7: Performance of NIR without CLS as a function ofζ. Blue curve is the mean fraction of links (FOL), green curve the
mean similarity of signed topology (SST) and red curve the mean residual sum of squares (RSS). Informative data with 20
experiments (A), partly-informative data with 15 experiments (B) and uninformative data with 10 experiments (C). The best
estimates marked with� and minimum RSS marked with©.
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Fig. 8: Performance of LSCO without CLS as a function ofζ. Blue curve is the mean fraction of links (FOL), green curve the
mean similarity of signed topology (SST) and red curve the mean residual sum of squares (RSS). Informative data with 20
experiments (A), partly-informative data with 15 experiments (B) and uninformative data with 10 experiments (C). The best
estimates marked with� and minimum RSS marked with©.
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(b) Glmnet with CLS

Fig. 9: Performance of Glmnet when all samples are used in validation set, without and with constrained least squares (CLS)
as a function ofζ. Blue curve is the mean fraction of links (FOL), green curve the mean similarity of signed topology (SST)
and red curve the mean residual sum of squares (RSS). Informative data with 20 experiments (A), partly-informative datawith
15 experiments (B) and uninformative data with 10 experiments (C). The best estimates marked with� and minimum RSS
marked with©.
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Â
))

F
O

L/
S

S
T

LSCO without LOOCO and CLS(A)

(B)

(C)

lo
g(

R
S

S(
Â
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(c) LSCO

Fig. 10: Glmnet, NIR and LSCOs’ performance without LOOCO and constrained least squares as a function ofζ. Blue curve is the mean fraction of links (FOL), green
curve the mean similarity of signed topology (SST) and red curve the mean residual sum of squares (RSS). Informative datawith 20 experiments (A), partly-informative
data with 15 experiments (B) and uninformative data with 10 experiments (C). The best estimates marked with� and minimum RSS marked with©.
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Fig. 11: Glmnet, NIR and LSCOs’ performance without LOOCO and with constrained least squares as a function ofζ. Blue curve is the mean fraction of links (FOL), green
curve the mean similarity of signed topology (SST) and red curve the mean residual sum of squares (RSS). Informative datawith 20 experiments (A), partly-informative
data with 15 experiments (B) and uninformative data with 10 experiments (C). The best estimates marked with� and minimum RSS marked with©.


