Optimal sparsity criteria for network inference

Andreas Tarnberg!2; Torbjorn E. M. Nordling3;

Abstract—Gene regulatory network inference,i.e. determina-
tion of the regulatory interactions between a set of genes, provesb
mechanistic insights of central importance to research in systems
biology. Most contemporary network inference methods rely on
a sparsity/regularization coefficient, which we call{ (zeta), to
determine the degree of sparsity of the network estimates,e.
the total number of links between the nodes. However, they offe
little or no advice on how to select this sparsity coefficient, in
particular for biological data with few samples. We show that an
empty network is more accurate than estimates obtained for a
poor choice of¢. In order to avoid such poor choices, we propose
a method for optimisation of ¢ which maximizes the accuracy
of the inferred network for any sparsity-dependent inference
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accuracy of the inferred network for a given inference metho
and data set. We apply our method to thigesilico data
sets with varying information content and demonstrate that
our method works well when the data is informative enough.
By selecting the sparsity coefficient, one in general de-
termines the trade off between accuracy of data prediction
and model complexity. Classical model selection critesigh
as AIC, BIC, and cross validation, have long been studied
and shown to under certain conditions perform a good trade
off, in particular, when the number of samples is large and
the model is used for data prediction [26]. These classical

method and data set. Our procedure is based on leave one outmethods have in a few studies been used for selection of

cross optimisation and selection of th& value that minimizes the
prediction error. We also illustrate the adverse effect of noise, fe&
samples, and uninformative experiments on network inference
and our method for optimisation of (. We demonstrate that our
¢ optimisation method for two widely used inference algorithms—
Glmnet and NIR—gives accurate and informative estimates of the
network structure, given that the data is informative enough.

I. INTRODUCTION

the regularization coefficient during the past decadeuyifinl
applications to biological data [9], [29], [19], [11], [27]23],

[5]. The BIC is in [29], [23], [19] shown to be favorable
over the other criteria tested in their study, while [27]ridu
selection based on minimization of the prediction error in
cross validation and bootstraping to be favorable over AIC
and BIC. Cross validation is in [11], [2] used for selection
of the regularization coefficient in LASSO, but they instead
chose the value corresponding to the sparsest model witi&n o

Gene regulatory networks (GRNs) model the mechanistgandard error from the minimum to decrease the number of
interactions between genes, giving insight into how signgh|se positives. Selection of the sparsity coefficient itwmek
between genes are propagated through the genetic netwgfkrence is only studied in [23)n vivo data is in [2] used
and how genes could respond to exogenous and endogengUgfer the GRN of Halobacterium and they selécbut the

stimuli. Much work has been done on developing and evatrye” network is unknown and the performance can therefore
uating algorithms for inference of regulatory networksniro not be properly evaluatedn silico data from the DREAM4
perturbations and responses in expression data [1], [18], [ challenge is in [23] used for method evaluation, but they
[21]. The primary goal is to find the structure of the networlgo not consider the signed topology that we are interested
i.e. the interactions that exist within the set of nodes. Acairafn. Networks with 100 genes were used to generate their
prediction of the observed responses is in general not iffic gata, simulating 100 multifactorial steady-state pewtidn

for accurate estimation of the network structure. Most cogxperiments. We consider a similar network inference case b
temporary inference methods rely on a sparsity/reguttoiza yse g small network and systematically vary data propeities
coefficient, which we calt, to control the degree of sparsitygain insight on how to select for three different inference

of the network estimated,e. the number of links between zgorithms. We focus on the relation between the prediction
the nodes. They however offer little or no advice on howrror and topological accuracy in network inference frortada
to select this sparsity coefficient, even though it typicadl with few samples and do not therefore consider rules that
crucial for accurate estimation of the structure. In patic make a specific trade off between predictive ability and rhode
the low number of samples encountered in biological dat sebmplexity, such as AIC and BIC.

is problematic and makes it unclear if classical model sielec  The use of simulated data from gold standard networks
and cross validation strategies work. We therefore inged for evaluation of network inference algorithms is todaynsta

if the optimal ¢ value can be found based on the predictiogard. Severain silico network and data generating software
error for data with a low number of samples and as a resgffograms have therefore been created [14], [25], [22]. &hes
propose a method for optimisation ¢fwhich maximizes the tools use varying modeling approaches and biological mech-
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anisms to simulate biological networks and network motifs.
Data sets based on simpler directly generated linear axdina
differential equation (ODE) models have also been used in
benchmarking [1]. For simplicity and control of network and
data properties, we here use a linear ODE model for data
generation.



Il. PROBLEM DESCRIPTION Ill. METHODS

. . A. Pre-treatment of data
Throughout this paper we consider a system that can be

approximated as a system of first order linear ODES: A model is only useful for prediction of exp(_arlments similar
to the ones it was estimated from, so the validation set shoul

&i(t) = Zj-vzl a;jz;(t) + pi(t) — fi(t) (1) only contain experiments that are linearly dependent on the
yi(t) = x;(t) + ei(t) experiments in the training set.

T We therefore measure the degree of linear dependence
where the state vectom(t) = [z1(t),22(t), ..., zn(t)] etween an experimenj, and the ones in the training set
represent actual mRNA expression changes relative to
initial state of the system. The vectas(t) — [p(t), ~ '7F 2>
p2(t),...,pn(#)]T is the desired or measured perturbation Ny, = HYtT#kkal @)

21(?; (iﬁ([eyzS (tf)rc;T(t;he azzh(?;j]Toinsetr?ey r;heeast??g?esigiseand similarly for the perturbations. All directions of thestem

that differs from the expression changes by the naige. are sufficiently excited in the examples that we providerlate

The parameters,;; of the interaction matrix describes the”" and we therefore use the smallest singular valjeas

influence of genej on genei. A positive value representsour limit on n. The index set of the validation experiments is

an activation, while a negative value represents an inbibit hence

The relative strength of the interaction is given by the galu = {k\nyk > on(Y) andn,, > UN(p)}. (5)

of the parameter. We make the common assumption that only ) ) ,

steady state data is recorded and write the system in matrix '€ Sparsity of the estimated network for a spedffialue

notation as depends bo_th on the data a_nd the algorithm used. To sw_nphfy
Y- _A'PLA'FLE. ) the comparison betwe_en different data sets and algonthms,

we therefore standardiz€, such that an empty network is

Here Y is our steady state expression matrix after applyingbtained for¢ = 1 and a full network for¢ = 0. For GImnet

the perturbationd” and A is the interaction matrix. This type and LSCO the standardizedis equal to the actua] divided

of linear data model has previously been used when inferripg the smallest;, such that the network estimaféreg =0

gene regulatory networks ie.g. [12], [20], [18], [24], [17]. for all different training data set§Y ;.y, Pk }. For NIR the

In this case the goal of network inference corresponds seandardized is (N — f)/N.

inference of the structure of the interaction matAx

To obtain sparse network models a variety of methods tHat Leave one out cross optimisation

either directly or indirectly places a weight or constraim  \when few experiments exist, use of the whole data set to
the model complexity in terms of the number of non-zergredict the network might be an attractive option but it vebul

parametersa;; have been developed in several fields [16]y general lead to over fitting of the parameters to noise. As
[10], [7], [3], [26]. The idea is to exclude less influentiakhe number of observations tend to be small, we employ a
interactions while keeping the most influential ones in ®rMeave one out cross optimisation (LOOCO) scheme, where
of ability to predict experimental observations by perializ each experiment that fulfills (5) in turn is left out and the

small non-zero parameters. To accomplish this, a method Spemainingt + & experiments are used to estimate the model
cific sparsity/regularization coefficient, which we herede 4. This model is then after re-estimation of the parameters

¢ and later standardize such thate [0, 1], is used in most ysed to predict the response fith experiment.
methods to set the Welght or constraint on the number of ,links Introduction of a term pena”zing model Comp|exity unfor-

like in the LASSO method [28] tunately also affects the estimate of most non-zero paemsiet
Areg(f) — argmin [|[AY + P||s, +<~HA||ZU 3) biasing them away from the value minimizing the preqllctlon
A error. Though a number of approaches to reduce the bias have

which is one of the most well known ones. Several conditiofen constructed, seeg.[9], [8], [19], none of them removes

for near ideal model selection have been established ftainer it completely in all cases and many inference methods do
methods, in particular given a suitable choice(of4], [10], not utilize these approaches. We therefore for all models re
[30], but how to in general chosgbased on data sets with aéstimate the non-zero parameters using a constrained least
low number of samples is still an open problem. We therefosgluares (CLS) method solving the following optimization
here study how the selection ofaffects the network estimate problem

for data sets of the type common in Systems biology. The idea ,, . . T

is to through numerical simulations and analysis investiga A =arg Hﬁnz diag(A” RA) (62)
an efficient method for selection af that can be wrapped SttA=AY + P, (6b)
around implementations of existing inference methodsdoul . T -1

be developed. In order to be efficient the method must select a R = (Ainit Cov([y] Ajni + COV[PD . (6c)
¢ value such that no network estimate that is structurallyemor sign A = sign Areg- (6d)

similar to the "true” network exists for any other choice (of X
for the particular inference method. As a result we propostere Ajnir is equal to the estimate given by the network
such a method. inference methodA,q if the network inference method gives



an estimate that can be used for prediction, otherwise tBe Network inference algorithms

. . 7 _ -I— -
ordinary least squares estimadgys = —PY' is used. Heré 15 gemonstrate the proposed workflow we choose two
denotes the Moore-Penrose generalized invetse;y] the  commonly used network inference algorithms, Glmnet[1H an
covariance matrix of the response in an experiment or &fjr[6]. Glmnet is a fast linear regression method that uses
estimate of itCov|[p] the covariance matrix of the perturbation Aggo ridge regression or a combination of them, but we
in an experiment or an estimate of it, anfn the signum o)y ytilize LASSO. NIR is a linear regression method that
function. This is a S|rr_1pl|f|ca_t|on of the method_ pres_ente_d Bses a discrete regularisation paramekerrepresenting the
[18], where the covariance is assumed to be identical in §lmper of regulators per gene and does an exhaustive search
experiments and thel constraint is replaced by constrainingy 411 & combinations. For comparison, we also use ordinary

the structure to be identical to that of the estimate givgBast squares with a cutoff (LSCO) to set all links that are
by the network inference method for the investigatedit |\ caker than the thresholdto zero

is based on the relation between weighted least squares and e ootz

maximum likelihood e_stlmators clear tha}t the s_olufuon asth ai; 2 { ag;® it af; 2 ¢ with A, = —PYT. (10
optimization problem is close to the maximum likelihoodi-est 0 otherwise

mate under the structural constraints, given that the e

normally distributed with the assumed covariance matréeces F. Data sets

A is sufficiently close to the final estimate. Consequently,
the estimate is close to the the best linear unbiased eetim&t
under the structural constraints, which is equal to the mmimn
variance unbiased estimate for normally distributed stro
This re-estimation therefore enables us to obtain unbiastd
mates of the non-zero parameters that minimizes the prewlict
error. We solve this convex optimisation problem using CV
(cvxr.com/cvx) in Matlab (www.mathworks.com).

To be able to control and systematically vary the properties
the data, as well as evaluate the performance by comparing
to the "true” network, we constructed a network with 10 nodes
fand 25 links (Figure 5 and Table 1) and used it to generate
in silico data. We want to simulate steady-state perturbation
xperiments of the type previously performéd vivo for
Ihference of a ten gene network of the Snfl signalling pashwa
in S. cerevisiag20] and have therefore tuned the properties
such that the network is biologically plausible. It is sgars
each gene has a negative self-loop representing mRNA degra-
dation, the digraph forms one strong component, the degree

The prediction error of all network estimatesobtained by Of interampatteness is 145, it is stables. all eigenvalues
the LOOCO for a specifi¢ is evaluated by the mean residuaff€ negative, and the time constants of the system are in the

C. Selection of optimaf

sum of squares (RSS) range 0.089 to 12 [24]. We used the network to generate
1 data sets with different information content by varying the
RSS() & — Z 19, — vl (7) perturbations and noise that is added to the simulated nespo
#V key We here present results for three data sets with 20, 15, and
X a1 _ ~ 10 experiments with SNR 35, 7, 1.5, respectively. The same
Here g, = —A p, is the predicted response agfl) is  \hite Gaussian noise realization obtained ndn in Matlab
determined in (5). o three data sets. The perturbations were designed to caohter
We select the largest value that minimizes the mean RSShe intrinsic signal attenuation such that all directiofighe
¢* £ maxarg min RSY(). ®) syste_m are excited and fche singular values of the response
¢elo1 matrices in all cases are in the range 0.77 to 1.2.

We later demonstrate that this selection gives efficient est
mates for sufficiently informative data. IV. RESULTS AND DISCUSSION

We have investigated the effect of the sparsity coefficient
on network inference using three different algorithms: Gétn
D. Performance evaluation NIR, and LSCO, as well as the performance of the proposed
gthod to identify an optimal value. The inference was
one for 1000(¢ values covering the range from a full
etwork to an empty one and we present the fraction of links
OL), similarity of signed topology (SST), and residuairsu
of squares (RSS) of the estimated networks in Figure 1-4.
The three data sets differ only in terms of the information
R AN A R content. We therefore call the most informative data sefy wit
SST= N2 ZZ (sign(ai;) == sign(ai;)) - (9 20 experiments and SNR 35 the “informative data set’, the
i=1j=1 one with 15 experiments and SNR 7 the "partly informative
The estimate corresponding to tljevalue at which the SST data set”, and the one with 10 experiments and SNR 1.5
is maximized is most similar to the "true” network for thethe "uninformative data set”. Using Glmnet and LSCO it is
inference method,e. the efficient estimate. possible to recover the "true” network for certdivalues with

We asses the accuracy of the network estimates by com
ing their structure to the "true” networli used for generation
of thein silico data. Both the existence and sign of each link i
equally important for us, so for each estimatédve measure
the similarity of signed topology (SST)



(A) Glmnet with CLS (A) NIR with CLS
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Fig. 1: Performance of GImnet with constrained least sqgiar€ig. 2: Performance of NIR with CLS as a function @fFor
(CLS) as a function of. Blue curve is the mean fraction ofexplanations see Figure 1.
links (FOL), green curve the mean similarity of signed tepol
ogy (SST) and red curve the mean residual sum of squares
(RSS). Informative data with 20 experiments (A), partly-
informative data with 15 experiments (B) and uninformativéifferent. The shaded green area marks the region in which
data with 10 experiments (C). The best estimates marked witte network estimates are more similar to the "true” network
O and minimum RSS marked witf). than an empty network. The lower boundary of this region
is in other words defined by the SST of the empty network,
and any network estimates with lower SST provide esseytiall
the informative data set (Figure 1 A and Figure 3 A), whileo mechanistic understanding of the system. Previous works
none of the three algorithms can recover the "true” netwotiave typically used random networks with the correct number
for any ¢ value with the other two data sets (Figure 1-3 Bf links to define a lower boundary on when an inference
& C). It is based on the RSS possible to select ¢healue method is useful, see.qg.[23], but we use the empty network,
that gives the best network estimate for the informative amthce even random networks with both the correct number of
partly informative data sets (Figure 1-3 A & B), but not folinks and fraction of positive and negative ones on average
the uninformative data set (Figure 1-3 C). have a lower SST for sufficiently sparse networks, like ours
All curves represents mean values over all the netwo(kee supplemental). The shaded red area is bounded by the
estimates obtained by the leave one out cross optimisatimean RSS for prediction of the responses in the validation se
(LOOCO) for each¢ value. An SST of one implies thatby the empty networkA = 0 and the least squares estimate
all the network estimates contain the same links with samt = —PY'. The lower boundary is merely included for
signs as the "true” network, and zero that they are completalisual comparision to the least squares estimate, while any



so NIR cannot for anyl or data set give an estimate with

(A LSCO with CLS SST one. This explains why the best NIR estimate for the
8 ————————— informative data differs from the "true” network and why
6 L ‘\ | the SST of the best estimate is identical for the informative
= 4L 108 — and partly informative data sets. For all three methods the
;ﬂ,r 5| \ 1069 RSS of the estimates increases with decreasing information
%) 5 content for most, values. The RSS is for alf value larger
% T e — 0.4 Q than the RSS of an empty network for the uninformative data
S 2¢F 0.2 set, illustrating that & value giving efficient estimates for

mechanistic inference cannot be found based on the RSS when
the number of experiments or SNR is too low.

It is well known that regularization introduces a bias in the
parameter estimates, and several methods intended taadecre
it have been published [9], [8], [19]. The effect of this b@s
the RSS is in our figures best seen by comparing the red RSS
curve in Figure 1 A and Figure 4 A for the informative data set.
The RSS curve generated after re-estimation of the non-zero
parameters using constrained least squares (CLS) in Figure
A has its minimum near the optimg| while the minimum in
Figure 4 A is located at a smallérvalue, corresponding to an
estimate that has a lower SST than an empty network. In order
to find the optimal¢ based on the minimum RSS, this bias
must be removed. We have chosen to do such a re-estimation
of the non-zero parameters, since many network inference
methods with this bias exist and we want to find a method
for selection of( that can be wrapped around any network
inference method that depends on a sparsity coefficient. In
[11], [2] the previouly mentioned one standard deviatiole ru
is used to in part compensate for the effect of bias.

FOL/SST

FOL/SST

Only linearly dependent experiments should be included
in the validation data set to avoid predicting the outcome of
experiments that the training data set lacks informaticouaib
Inclusion of such experiments in general increases the RSS
for almost all¢ values and moves the minimum away from
Fig. 3: Performance of LSCO with CLS as a function(of the efficient estimate. This is for the informative data ssirs
For explanations see Figure 1. by comparing the RSS when all experiments are included in

the validation data set used during LOOCO (Figure 4 B) and

when only the experiments ¥ (5) are included (Figure 1 A).
network estimate with a larger RSS than the upper bouitie RSS of the former is at least three orders of magnitudes
essentially is useless for data prediction. larger in the interesting range.

By studying the green SST curve for the three methods
in Figure 1-3 it is obvious that an efficient network estimate By combining selection of linearly dependent experiments
only is obtained for a narrow range @f values. To get a and unbiased re-estimation of parameters it is for suffilyien
network estimate with an SST within 5% of the best one fanformative data based on the RSS of the validation data set
the informative datal must be selected within a range ofpossible to chose a value close to the optimal one, at least
0.0078 (Glmnet),0.1 (NIR), and0.013 (LSCO). This confirms for the three inference algorithms that we have investijate
previous reports stating that careful selectionfaé essential here (Figure 1-3). The proposédselection method hence op-
to obtain a network estimate with a structure similar to thdinizes the accuracy of the inferred network, with a tengienc
of the "true” network [23]. towards having more false positives than negatives when the

By comparing the results obtained for the three data setsue” network cannot be found. This tendency is best seen
the adverse effect of noise and few samples is seen. The S&TNIR. The "true” network has four links on one row, hence
of the best estimate decreases with decreasing informatelhNIR estimates for & larger than 0.6 lack at least one true
content for all three methods as expected (Figure 1-3). Ndiek, which increases the RSS and prevents us from finding
that each gene will have the same indegree in the estimatigs optimal(. Instead our method identifies the largéstalue
given by NIR, while one gene has indegree 4, 3 genes indegegenhich the estimate contains all links present in the "rue
3 and the remaining ones indegree 2 in our network (Figure Betwork and some false positives.




(A) Glmnet without CLS
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Fig. 4: Performance of GImnet without CLS as a function o[f ]
¢ for the informative data (A) and with CLS when all experi
ments are included in the validation set (B). For explamatio
see Figure 1.

(12]

(13]

[14]
V. CONCLUSION

(18]

Network estimates that are structurally close to the "true”
network are only obtained within a narrow range¢o¥alues [16]
and estimates that are more different than the empty network
are obtained for poor choices. The range of good estimates
depends on both the algorithm and data set, which makeg
data based selection @f imperative. We demonstrate that
the ¢ value yielding highly accurate network estimates can
be determined by minimization of the prediction error in a
leave one out cross optimization scheme for data with onI%/
1.5 to 2 times as many experiments as variables. (18]

We also demonstrate the adverse effect of noise and too f
samples, and how these problems can be detected based oﬁﬁ
residual sum of squares becoming larger than for an empty
network. Correct selection af requires that non-informative [20]
data samples are excluded from the validation set, as well
as re-estimation of biased parameters. We therefore iaclud
these two steps in the proposed method:foptimization. The [21]
proposed method can be wrapped around almost any regula-
tory network inference method and works well for sufficigntl
informative data, thus improving the workflow from data t
network models that provide a better understanding of t
biological mechanism.
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S.6. SYPPLEMENTARY MATERIAL

We here provide additional details, in particular, abowg tretwork used for data generation and simulated data. This
information makes it possible to reproduce our figures. e give additional comments on the results for interestadees.

A. In silico data sets and network properties

The gene regulatory network that we use to generatethitico data is shown in Figure 5 and the strength of all interactions
in Table 1. The true networld has10 states, each representing the mRNA abundance of a gene.tathe form a stable
system with self-degradation of each mRNA. One path thraalfistates exists, which means that it consists of one strong
component.

We generated the responses in Matlab using (S2), Wits 0 and E being white Gaussian noise with the variance given
in Table 2. The perturbation matricd3 and obtained response with noise are given in Table 5a-tab:noneinf-expr. Further
properties of the data sets are shown in Table 2.

B. Network inference and selection ©f

The range of the actudl values used in the three algorithms is given in Table 3. Th& REL, and SST for all three
algorithms and data sets without re-estimation of the mpeedmeters using CLS is shown in Figure 6-8. The RSS, FOL, and
SST is for GImnet both with and without CLS when all experitseare included in the validation set shown in Figure 9. By
comparing the RSS in this figure to that for inclusion of lingalependent experiments one sees the importance of iselect
of validation experiments. To make it possible to asses #reefits of using cross optimisation we also include Figurei®
11 where all experiments were used for training and then ttamRSS over all experiments calculated. The minimum RSS
occurs in this case for full or almost full network and thegraeters are over fitted to the noise in the data.

C. Similarity of signed topology of random networks

Previous works have typically used random networks withdbkect number of links to define a lower boundary on when
an inference method is useful, seg.[23], but we use the empty network, since even random netsvaith both the correct
number of links and fraction of positive and negative oneseerage have a lower SST for sufficiently sparse networks, li
ours. Based on Monte Carlo simulations in Matlab we found tha mean and median of SST is 0.6. And if we make all all
diagonal elements negative in the random networks thercie@ses to 0.74, while it is 0.75 for an empty network.

D. Constrained least squares

To account for the fact that that our estimated network dagtsim all cases have a full rank and the equation to the
minimisation problem presented for CLS can not be solved deded in these cases a small regularisation terrh-ef10—1°
to the correction term.

E. minimum RSS for informative data

It can be observed in the Figure 1 that the minimum RSS is thfigb the left of the optimal point. This can be explained
by the fact that in the informative data (Figure 5b) validatset, node G is not perturbed. Therefore the algorithm earove
links in the “true” network with small effect on the prediwmti error.



Source Node

Fig. 5: Network structure

TABLE 1: Network interactions

Interaction Type

Target Node

Connectivity radgon Strength

GC>P—OMcecIOWOTMTTM>PMOC—U0OIOOOWI>

Inhibition
Activation
Inhibition
Activation
Inhibition
Inhibition
Activation
Inhibition
Activation
Activation
Activation
Inhibition
Inhibition
Inhibition
Activation
Inhibition
Inhibition
Activation
Inhibition
Inhibition
Activation
Inhibition
Inhibition
Activation
Inhibition

COU T ——=TITIIIOOMTMMMUITOOO0OmPI>>

-0.507
0.67
-0.943
1.157
-7.535
-0.5
2.876
-11.22
0.472
0.995
1.087
-0.99
-0.1
-0.842
0.1
-0.085
-0.279
4.171
-2.176
-0.25
0.148
-0.05
-0.584
0.181
-0.808

0.507
0.67
0.943
1.157
7.535
0.5
2.876
11.22
0.472
0.995
1.087
0.99

0.1
0.842
0.1
0.085
0.279
4171
2.176
0.25
0.148
0.05
0.584
0.181
0.808

11
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TABLE 2: Data set properties: Signal to noise ratio, SNRsaaiariance) and smallest singular values,; (Y') andsigmay P,
and largest singular values (Y') and sigma; P

Informative | Partly informative| Uninformative

# experiments| 20 15 10

SNR 35 7 15

A 8.7224e-06 | 2.8399e-04 0.0049
on(Y) 7.8284e-01| 7.7531e-01 6.5951e-01
Yn(P) 8.4024e-02 | 8.3036e-02 8.4392e-02
o1(Y) 1.2357e+00| 1.2283e+00 1.3784e+00
1 (P) 1.1998e+01| 1.1986e+01 1.2041e+01

2.3144e-06/2.3144
1.1292e-05/11.2923
10/0

TABLE 3: ¢ conversion

10/0

Informative (min/max)| Partly informative (min/max)| Uninformative (min/max)
2.9644e-06/2.9644
1.1631e-05/11.6308

3.4851e-06/3.4851
1.3812e-05/13.8121
9/0
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TABLE 4: Optimal SST and®5% of optimal SST and corresponding values, RSS, FOL, SST and Matthews correlation
coefficient (MCC). -5% corresponds to smallestiosest to 5% lower than optimal SST. +5% corresponds t@esitgclosest
to 5% lower than optimal SST.

¢ RSS FOL SST MCC
Glmnet info
-5% 0.00280187| 0.0128184| 0.301667| 0.948333| 0.878854
optimal 0.00473888| 0.0445398| 0.251667| 0.996667| 0.991283
+5% 0.0105688 0.436417| 0.199167 0.9475| 0.859023
Glmnet partly
-5% 0.0102804 92.6268 0.286 0.86 | 0.646725
optimal 0.0393183 1953.2 0.162 0.904 | 0.736548
+5% 0.0579112| 1.18043e+06 0.12 0.866 | 0.625866
Glmnet uni
-5% 0.0177112 472.361 0.262 0.784 | 0.490044
optimal 0.0337698 2128.13 0.2 0.826 | 0.556872
+5% 0.0849042 1268.1 0.104 0.782| 0.319335
LSCO info
-5% 0.002688| 0.00014431| 0.303333| 0.946667| 0.875584
optimal 0.0045463| 0.000128145| 0.254167| 0.994167| 0.984788
+5% 0.0157833 0.0127847| 0.193333| 0.943333| 0.847922
LSCO partly
-5% 0.0102804 0.192458 0.308 0.862 | 0.668126
optimal 0.0238989 2.78229 0.21 0.908 | 0.749516
+5% 0.0563314 3.77737 0.144 0.86 | 0.61867
LSCO uni
-5% 0.0305386 2991.37 0.266 0.776 | 0.431465
optimal 0.0613591 5835.49 0.124 0.796 | 0.389913
+5% 0.559081 0.894621 0.008 0.758 | 0.139262
NIR info
-5% 0.7 | 0.00735917 0.3 0.93 | 0.831522
optimal 0.8 0.0168469 0.2 0.95 | 0.866025
+5% 0.9 0.572672 0.1 0.85| 0.57735
NIR partly
-5% 0.7 0.225786 0.3 0.906 | 0.771048
optimal 0.8 3.64408 0.2 0.95 | 0.866025
+5% 0.9 0.507342 0.1 0.85| 0.57735
NIR uni
-5% 0.7 138.251 0.294 0.784 | 0.469483
optimal 0.8 3.95052 0.196 0.85 | 0.576567
+5% 0.9 2.18126 0.098 0.848 | 0.570821
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TABLE 5: Informative data set. Bold numbers indicate sarapievalidation set.

(a) Expression matrixy”

1 2 3 4 5 6 7 8 9 10

n 1.30 1 0.89 1.24 1.65 0.40 1.38 0.04 1.40 1.28
A | 0.0823 0.0497 0.0391 -0.2440 0.6598 -0.1020 -0.2752 -0.0040.5339 -0.0663
B | -0.5522 0.0176 0.0159 -0.0959 0.0124 0.6028 -0.0991 -6.003.0048 -0.0264
C | -0.4447 0.0153 0.0152 -0.0756 0.0119 -0.7857 -0.0815 +7100-0.0038 -0.0232
D | 0.0003 -0.6874 -0.5500 -0.1014 0.0167 -0.0024 -0.1193 0i&0 -0.0113 -0.0354
E | -0.4907 0.0191 0.0156 -0.0756 0.0048 0.0027 -0.0853 -@.00®€.0097 -0.0233
F | -0.0084 -0.0069 -0.0038 0.0290 -0.0736 0.0171 0.0343 22000.0647 0.0020
G | -0.0113 -0.0036 -0.0076 0.0360 -0.0962 0.0154 0.0410 @G.00D.0734 0.0098
H | 0.0602 0.0326 0.0289 -0.1864 0.0025 -0.0802 -0.2073 -0.00®.0021 -0.0510
| -0.1226  0.0023 -0.0019 -0.0288 0.0139 0.0076 -0.0296 ©0.00-0.0054 -0.6854
J 0.0243 0.0066 0.0063 -0.0499 0.1478 -0.0155 -0.0588 0.00M61163 -0.0101

11 12 13 14 15 16 17 18 19 20
n 1.00 1.08 0.89 0.29 0.03 0.76 0.82 1.32 0.86 1.25
A | 0.1028 -0.0050 -0.0036 -0.0014 0.0018 0.0341 0.0690 0.07#M1401 -0.0203
B | -0.5205 0.0686 0.0422 0.0010 -0.0002 0.0120 0.0272 0.021000%t2 -0.0128
C | -0.4211 0.0561 0.0337 -0.0023 -0.0006 0.0164 0.0177 0.02420050 -0.0061
D | 0.0055 0.0051 -0.0013 -0.0032 0.0055 -0.4400 0.0902 0.03260011 -0.0078
E | 0.5455 0.0589 0.0433 0.0029 0.0005 0.0063 0.0181 0.0213005B. -0.6095
F | -0.0038 -0.0060 -0.0024 -1.0014 -0.0018 -0.0036 -0.0070.01@8 0.0159 -0.0008
G | -0.0162 -0.8036 -0.5762 0.0122 -0.0058 -0.0048 -0.0116012% 0.0192 0.0045
H | 0.0812 -0.0090 -0.0043 0.0008 0.0042 0.0270 0.0475 0.055MP576 -0.0168
I 0.1383 0.0888 0.0576 0.0025 -0.0016 -0.0003 0.0096 0.69860059 -0.1575
J 0.0193 -0.0018 -0.0048 -0.0042 -0.0029 0.0065 0.9823 @.016.0293 -0.0098

(b) Perturbation matrixpP
1 2 3 4 5 6 7 8 9 10

n 42.14 123.76 109.34 22.62 0.32 56.64 25.09 0.07 0.28 0.16
A 0 0 0 0 0.3300 0 0 0 -0.2660 0
B 0 0 0 0 0 1.4770 0 0 0 0
C | -3.5550 0 0 0 0 -5.6840 0 0 0 0
D 0 -7.7710 -6.1450 -1.1230 0 0 -1.2540 0 0 0
E 0 0 0 0 0 0.8610 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0
H 0 29740 2.3550 0 0 0 0 -0.0080 0 0
| 0 0 0 0 0 0 0 0 0 -0.3960
J 0 0 0 0 0 0 0 0 0 0

11 12 13 14 15 16 17 18 19 20
n 42.29 0.01 0.01 0.01 0.00 95.12 0 0.16 50.58 1.11
A 0 0 0 0 0 0 0 0 -0.7150 0
B 0 0 0 0 0 0 0 0 0 0
C | -3.4010 0 0 0 0 0 0 0 -2.7680 0
D 0 0 0 0 0 -4.9700 0 0 0 0
E | 0.9960 0 0 0 0 0 0 0 0 -0.5980
F 0 0 0 -0.8440 -0.0030 0 0 0 0 0
G 0 -0.0690 -0.0490 0.1010 0 0 0 0 0 0
H 0 0 0 0 0 1.9040 0 0 2.0940 0
I 0 0 0 0 0 0 0 0.4040 0 0
J 0 0 0 0 0 0 0.7810 0 0 0




TABLE 6: Partly informative data set. Bold numbers indicatanples in validation set.

(a) Expression matrixy”

1 2 3 4 5 6 7 8 9 10
n 0.85 0.59 1.07 0.55 1.25 0.53 0.22 0.33 0.32 0.89
A | -0.0979 0.0536 -0.1061 -0.1752 0.9245 0.0349 0.0483 -6.000.0830 -0.0199
B | -0.0117 -0.0356 -0.0447 0.9847 0.0194 0.0275 0.0111 0.07#DB0196 0.0905
C | -0.0243 -0.0470 -0.0448 -0.0599 0.0152 -0.0100 0.0068 83.95-0.0206 0.0352
D | -0.3855 0.0618 0.6442 -0.0018 0.0203 0.0847 0.0432 0.0120161 -0.0393
E | -0.0314 -0.0356 -0.0273 -0.0655 0.0107 0.0257 -0.0114 18®0 -0.0215 0.0558
F | 0.0294 -0.0268 0.0170 0.0423 -0.1093 -0.0173 -0.0224 68010.0235 -0.0043
G | 0.0110 -0.0013 0.0284 0.0435 -0.1399 -0.0071 0.0228 0.00®40072 -0.7398
H | -0.0594 -0.9901 -0.0851 -0.1473 0.0375 0.0260 0.0076 3300-0.0599 -0.0224
| 0.0162 -0.0121 -0.0146 -0.0139 0.0009 0.0096 -0.0027 +72030.0192 0.0563
J 0.0094 -0.0078 -0.0050 -0.0213 0.1935 0.9792 0.0084 0.00410332 -0.0020
11 12 13 14 15
n 0.87 0.79 0.36 0.84 1.03
A | 0.0153 -0.0417 0.0339 0.1303 -0.0320
B | 0.0433 0.0025 -0.0048 0.0602 0.0206
C | 0.0425 -0.0198 -0.0364 0.0487 -0.0237
D | 0.0216 -0.0140 -0.0096 0.0478 -0.6244
E | 0.0435 -0.9767 0.0197 0.0406 -0.0032
F | -0.0102 0.0157 0.9530 -0.0462 0.0297
G | -0.6193 0.0074 -0.0150 0.0225 -0.0012
H | 0.0127 -0.0342 -0.0093 0.0594 -0.0516
I 0.0993 -0.2368 -0.0346 0.9632 -0.0174
J | -0.0144 -0.0002 0.0213 0.0135 -0.0119
(b) Perturbation matrixpP
1 2 3 4 5 6 7 8 9 10
n 79.64 35.61 106.09 1.08 0.32 0 2.61 21.86 1.26 0.01
A 0 0.6830 0 0 0.4640 0 0 0 0 0
B 0 0 0 0.9700 0 0 0 -1.1070 0 0
C 0 2.6300 0 0 0 0 0 7.5150 0 0
D | -4.6250 0 7.4050 0 0 0 0.1370 0 0 0
E 0 0 0 0 0 0 0 -1.0940 0 0
F 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 -0.0630
H | 1.5830 -2.1560 -2.9410 0 0 0 0 0 -0.1370 0
| 0 0 0 0 0 0 0 0 0 0
J 0 0 0 0 0 0.7800 0 0 0 0
11 12 13 14 15
n 0.01 1.03 0.01 0 102.69
A 0 0 0 0 0
B 0 0 0 0 0
C 0 0 0 0 0
D 0 0 0 0 -7.0150
E 0 -0.9380 0 0 0
F 0 0 0.8300 0 0
G | -0.0550 0 -0.0990 0 0
H 0 0 0 0 25430
| 0 0 0 0.5640 0
J 0 0 0 0 0
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TABLE 7: Uninformative data. Bold numbers indicate samptesalidation set.

(a) Expression matrixy”

1 2 3 4 5 6 7 8 9 10
n 1.03 0.95 0.92 0.72 0.80 0.94 151 0.74 0.66 0.93
A | 0.0378 0.0734 0.9885 0.0433 -0.0320 0.0070 0.0231 -0.04591088 -0.0635
B | 0.1283 -0.7536 -0.0692 -0.0408 -0.0260 0.0302 0.0388 @.133.0277 0.0137
C | -0.1594 0.1012 0.0633 -0.0427 0.0151 -0.0652 0.0686 0.05209847 0.0560
D | 0.0606 -0.0004 0.1340 -0.0570 0.0113 0.0088 0.1206 0.06681120 -0.8205
E | 0.0218 0.1054 0.0485 -0.1714 -1.0195 0.0217 0.1413 0.0180470 -0.0413
F | -1.0849 -0.0344 -0.0390 0.1035 0.0008 0.0998 -0.0058 83090.0480 0.0111
G | -0.0221 -0.0322 -0.0804 0.0256 -0.0081 -0.0636 -0.1189099r7  0.0575 -0.0082
H | 0.0241 0.2321 -0.0106 0.9413 0.0254 0.0774 0.0233 0.0324010@0 -0.1229
I 0.2508 0.1151 0.0355 0.1052 -0.1663 -0.0094 0.9040 0.0914017@ -0.0292
J 0.1948 0.1374 0.1555 -0.1247 0.0725 1.0579 0.1877 -0.01440801 -0.1224

(b) Perturbation matrixpP

1 2 3 4 5 6 7 8 9 10
n 0.01 1.08 0.32 29.19 1.03 0 0 0.01 21.83 9.16
A 0 0 0.4700 -0.6760 0 0 0 0 0 0
B 0 -0.9700 0 0 0 0 0 0 1.1100 0
C 0 0 0 -2.6140 0 0 0 0 -7.5440 0
D 0 0 0 0 0 0 0 0 0 -11.2510
E 0 0 0 0 -0.9410 0 0 0 1.0950 0
F | -0.8360 0 0 0 0 0 0 0 0 0
G | 0.1000 0 0 0 0 0 0 -0.0850 0 0
H 0 0 0 2.1740 0 0 0 0 0 4.2120
| 0 0 0 0 0 0 0.5660 0 0 0
J 0 0 0 0 0 0.7790 0 0 0 0

16
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A Glmnet without CLS

FOL/SST

FOL/SST

FOL/SST

Fig. 6: Performance of GiImnet without CLS as a functionfoBlue curve is the mean fraction of links (FOL), green curve
the mean similarity of signed topology (SST) and red cuneerttean residual sum of squares (RSS). Informative data With 2
experiments (A), partly-informative data with 15 experirtge(B) and uninformative data with 10 experiments (C). Thstb
estimates marked withl and minimum RSS marked witf).
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(A) NIR without CLS
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Fig. 7: Performance of NIR without CLS as a function{ofBlue curve is the mean fraction of links (FOL), green curte t
mean similarity of signed topology (SST) and red curve themeesidual sum of squares (RSS). Informative data with 20
experiments (A), partly-informative data with 15 experirtge(B) and uninformative data with 10 experiments (C). Thstb
estimates marked withl and minimum RSS marked witf).
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(A) LSCO without CLS
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Fig. 8: Performance of LSCO without CLS as a function{oBlue curve is the mean fraction of links (FOL), green curtve t
mean similarity of signed topology (SST) and red curve themeesidual sum of squares (RSS). Informative data with 20
experiments (A), partly-informative data with 15 experirtse(B) and uninformative data with 10 experiments (C). Thstb
estimates marked withl and minimum RSS marked witf).
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Glmnet without CLS Glmnet with CLS
(A) using all exp. for validation (A) using all exp. for validation
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(a) Glmnet without CLS (b) GImnet with CLS

Fig. 9: Performance of Glmnet when all samples are used idat&in set, without and with constrained least squaresSjCL
as a function of{. Blue curve is the mean fraction of links (FOL), green curve mean similarity of signed topology (SST)
and red curve the mean residual sum of squares (RSS). Intiventiata with 20 experiments (A), partly-informative datéh
15 experiments (B) and uninformative data with 10 experi®é@). The best estimates marked withand minimum RSS
marked with(.



(A) Glmnet without LOOCO and CLS (A) NIR without LOOCO and CLS (A) LSCO without LOOCO and CLS
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Fig. 10: Glmnet, NIR and LSCOs’ performance without LOOCQI aonstrained least squares as a functiog.dBlue curve is the mean fraction of links (FOL), green
curve the mean similarity of signed topology (SST) and rediedhe mean residual sum of squares (RSS). Informative wli#tta20 experiments (A), partly-informative
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(A) Glmnet without LOOCO with CLS (A) NIR without LOOCO with CLS (A) LSCO without LOOCO with CLS
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Fig. 11: GImnet, NIR and LSCOs’ performance without LOOC®@ aith constrained least squares as a functiod. &lue curve is the mean fraction of links (FOL), green
curve the mean similarity of signed topology (SST) and rediedhe mean residual sum of squares (RSS). Informative wli#tta20 experiments (A), partly-informative
data with 15 experiments (B) and uninformative data with 2fegiments (C). The best estimates marked witland minimum RSS marked witp).
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