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mRNA expression is widely used as a proxy for protein expression. However, their true relation is not known
and two genes with the same mRNA levels might have different abundances of respective proteins. A related
question is whether the coexpression of mRNA for gene pairs is reflected by the corresponding protein pairs.
We examined the mRNA–protein correlation for both expression and coexpression. This analysis yielded
insights into the relationship between mRNA and protein abundance, and allowed us to identify subsets of
greater mRNA–protein coherence.
The correlation between mRNA and protein was low for both expression and coexpression, 0.12 and 0.06
respectively. However, applying the best-performing quality measure, high-quality subsets reached a Spearman
correlation of 0.31 for expression, 0.34 for coexpression and 0.49 for coexpressionwhen restricted to functionally
coupled genes. Our methodology can thus identify subsets for which the mRNA levels are expected to be the
strongest correlated with protein levels.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The function of a protein ismodulated by its expression level, or abun-
dance. According to the transcriptional control paradigm, protein expres-
sion is governed by factors that control transcription of a gene into an
mRNA. Consequently, mRNA measurements are often used as proxies
for protein abundance. Thanks to the microarray and sequencing tech-
nologies, mRNA abundance is relatively easy and cheap to measure
quantitatively. Protein expression data is more resource-consuming to
obtain, and also has problems to reach full proteome coverage. Many
projects have used mRNA coexpression data to predict functional cou-
pling between the proteins they encode (Alexeyenko and
Sonnhammer, 2009; Daub and Sonnhammer, 2008;Huttenhower et
al., 2009; vanNoort et al., 2003). However, the quantitative relationship
between amRNA and its encoded protein is far from entirely known (de
Sousa Abreu et al., 2009). It is in fact highly complex and can be affected
by factors such as systematic measurement errors and varying rates of
translation, protein degradation, and mRNA degradation.

Much work has previously been done on comparing mRNA and
protein abundances in various organisms (de Sousa Abreu et al.,
2009; Greenbaum et al., 2003; Le Roch et al., 2004; Lu et al., 2007;
Nie et al., 2007), reporting correlation coefficients of up to 0.7. For
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early studies, the correlation was probably an overestimate because
the proteomics techniques could only measure high-abundance
proteins (Ghaemmaghami et al., 2003). However, even with the best
available techniques, the discrepancy between mRNA and protein
abundances remains profound.

Attempts to model translation and protein decay rates based on
sequence signals and features have been made (Brockmann et al.,
2007; Nie et al., 2006; Schwanhäusser et al., 2011; Tuller et al.,
2007; Vogel et al., 2010; Wu et al., 2008). While mRNA abundances
provide a high contribution to explaining protein levels, equally
much can be explained by features relating to translation and
mRNA/protein turnover, and together they can explain up to 80% of
protein abundance variation (Schwanhäusser et al., 2011). Still,
even for a well-defined system with low measurement errors and a
sophisticated model, a large part of the protein abundance factors
remains unexplainedwhen externally validated. In light of these results
one might question the sensibility of using mRNA measurements as a
proxy for protein abundance.

Even if mRNA often is an inaccurate proxy for protein abundance,
it might still be possible to identify sets of genes where the coherence
of mRNA and protein abundances is greater.

We have investigated distributions of mRNA–protein correlation
in several ways. They witness a great heterogeneity in the data, i.e.
some genes or gene groups have much higher correlation than others.

There are several potential sources of noise. Technical sources add
some uncertainty and could potentially have systematic errors for all/
some genes. Biological sources include temporal abundance variation
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as well as variation between individual cells, composition of cell
populations, cell types, conditions and individuals. Biological noise
also includes the extent to which protein abundance is regulated by
mRNA abundance — the uncertainty of protein abundance would be
large if it is only partly dependent on mRNA abundance.

Intrinsic properties of an expression profile such as signal-to-noise
ratio and variability can affect the correlation. This suggests that re-
fining the data by filtering, higher mRNA−protein concordance can
be obtained. We propose methods to measure the inherent quality
of an expression profile, and have evaluated their performance on
global datasets. High quality here means profiles with low noise
levels and/or with high capacity to detect mRNA−protein correlation
if it exists.

The study of mRNA and protein expression concordance has so far
generally been done on the level of expression, i.e. by calculating the
correlation of expression levels across a set of conditions between the
Genes with expression meas
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Fig. 1. Principles of mRNA and protein expression comparison. mRNA transcripts are drawn
the same set of tissues, a correlation coefficient between the mRNA and protein expression
Alternatively, correlations between two mRNAs or two proteins can be calculated. This is re
protein correlation can either be calculated from expression profiles (left), or from correlat
mRNA and its corresponding protein. An alternative approach to
study the expression concordance is to calculate the second order
correlation, or correlation of coexpression. This signifies how well
mRNA−mRNA coexpression corresponds to protein−protein coex-
pression for the correspondingmRNA and protein pairs (Fig. 1). Coex-
pression correlation has previously been studied in the contexts of
finding functional relationships within a proteome (Zhou et al.,
2005), to study functional conservation between species (Dutilh et
al., 2006), and to examine mRNA−protein concordance in cancer
cell lines (Shankavaram et al., 2007).

As mentioned above, the bottleneck in mRNA−protein expression
comparisons is usually the lack of proteomics data and the generally
low coverage of the proteome. To meet the need of measuring all
human proteins, the Human Protein Atlas (HPA) is being constructed
as a global database of protein abundances in over 100 normal and
cancer tissues (Uhlen et al., 2005). It is based on antibodies designed
ured across tissues
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for each human protein that stain tissue samples which are subse-
quently evaluated by pathologists to quantify the abundance.

To match the HPA tissue-specific protein expression with tissue-
specific mRNA expression we used the microarray dataset from the
Genomics Institute of the Novartis Research Foundation (Su et al.,
2002). It is based on a custom designed array for measuring transcript
expression of all human genes in 79 tissues. These datasets represent
some of the problems that may be encountered when using publicly
available data, e.g. that samples are of related but different nature
and that the units of measurement are not directly translatable. In
this case many of the tissues are not exactly the same for both data-
sets, introducing the need to draw a map of corresponding tissues.

To our knowledge there has been no large scale study of
mRNA−protein expression concordance across human tissues, and
also not on the concordance of mRNA and protein coexpression across
human tissues. We here present a study that includes both of these
novel aspects. The study was first done as a global comparison, using
all mRNA/protein expression or mRNA−mRNA/protein−protein coex-
pression pairs simultaneously, followed by a genewise analysis, looking
at single mRNA/protein expression pairs or single mRNA−mRNA/
protein−protein pairs in the case of coexpression.

We show that using quality measures it is then possible to separate
genes with high quality from those where any signal is likely to be
drowned by noise.When limiting the comparison to the highest quality
parts of the mRNA and protein data their correlation can become rela-
tively high, despite their great differences in origin and generation.
The main result of our study is the establishment of a methodology to
make high-confidence mappings between mRNA and protein levels.
The ability to do this is valuable to the vast amount of research that
uses the wealth of mRNA expression data to infer protein-level proper-
ties since it enables reliable use of mRNA measurements as a proxy for
protein levels.

2. Materials and methods

2.1. Protein expression dataset

The protein dataset (HPA) was obtained through a collaboration
with the Swedish Human Proteome Resource (HPR) Center. It consists
of protein expression measurements for 102 combinations of tissues
and cell types (Table S1) derived from antibody-based tissue profiling
(Berglund et al., 2008; Uhlen and Ponten, 2005). Specifically, there are
6104 protein epitope signature tags, antigens used in antibody genera-
tion designed to be unique for a target protein, corresponding to 4908
genes. Each tag, or probe, is measured in three biological samples of
each tissue. The expression values, given as colors, were recoded to
1–4. If the value for all three samples was black, it was coded as value
missing; otherwise it was recoded according to the non-black part. If
two or more probes corresponded to the same gene, the recoded
expression values for the probes were averaged for that gene. Of the
4908 genes in the HPA set, 3646were also present in themRNA expres-
sion dataset and used for analysis.When used for calculating correlation
of expression, values below 1.5, indicating absence, were set to NA. This
was done in order to avoid a high proportion of absence values from
biasing the correlation. A concordance of absence is not as meaningful
as a concordance of abundance. Samples from cancer tissueswere omit-
ted because of the higher heterogeneity of tumors as compared with
normal tissues (Uhlen et al., 2005).

2.2. mRNA expression dataset

The microarray dataset, the Human U133A+GNF1H (MAS5-
condensed) dataset, was downloaded from http://symatlas.gnf.org
(Su et al., 2002). The dataset consists of two parts; the HG-U133A Affy-
metrix chip and the custom made GNF1H chip. Together, the two
contains 44,775 probe sets corresponding to 33,698 gene models. For
each probe set there are two replicates for 79 human tissues (Table
S2), organs and cell lines. Probe identifiers were mapped to gene iden-
tifiers followed by a pruning of probes mapping to more than one gene.
After mapping and pruning, 22,572 probes corresponding to 13,733
genes remained. Where several probes mapped to the same gene,
expression values for the probes were averaged for that gene. Of the
13,733 genes, 3646 were also present in the protein expression dataset
and used for analysis.

2.3. Quality measures

In order to stratify the data into subsets of different quality, a
number of measures were calculated from each gene's expression
profile. For the mRNA data the following measures were used:

• Mean expression: the arithmetic average of the gene's expression in
all tissues.

• Replicate correlation: Spearman correlation between the two bio-
logical replicates across all tissues. This quality measure indicates
the levels of biological and measurement noise.

• Entropy:

∑pi logpi, pi ¼ ei=∑ei where ei is the gene's expression level in
tissue i. This corresponds to the negative Shannon entropy with tissues
representing symbols and frequency approximated by expression
levels. This quality measure will separate uniform expression profiles
from those with a wide span of expression values.

• Span: the maximum expression minus the minimum. This quality
measure indicates the maximum absolute span of expression values
in the expression profile.

• Normalized span: the maximum expression minus the minimum
divided by the mean expression. This quality measure is the same
as the span, but takes the mean level of expression into account.

• Median expression: the median of the gene's expression in all tissues.
• Sd: standard deviation of the gene's expression in all tissues. This
quality measure indicates the variability of values in the expression
profile.

• Normalized sd: standard deviation divided by the mean expression.
This quality measure is the same as sd, but takes the mean level of
expression into account.

• Mean+entropy: the combined sum of mean expression and entropy
ranks. This qualitymeasure separates lowuniform expression profiles
from those with high non-uniform expression profiles.

In all caseswheremultiple probes existed for a given gene, the arith-
metic average of these values was used. Quality measures were gener-
ated separately for all tissues, for mapped tissues and for non-mapped
tissues.

For the protein data, the antibody validation score provided in the
HPA database (Berglund et al., 2008) was used, which is based on im-
munohistochemistry, immunoflourescence, protein array and western
blot data. It is discretized at four levels: very low, low, moderate, and
high. The number of proteins in each level was 487, 1524, 1173, and
462.

2.4. Mapping of tissues

Tissues of the protein dataset were mapped to tissues of the mRNA
dataset. Where tissues in one dataset corresponded to several tissues
in the other dataset an average was taken to represent the pool of
tissues, e.g. the mRNA dataset contains expression for lymph node
while the protein dataset has separate measurements for follicle cells
and non-follicle cells of the lymph node. Similarly where several
tissues of one dataset corresponded to several tissues in the other
dataset averages were taken for both pools of tissues, e.g. the mRNA
dataset has measurements for cerebellum and cerebellum peduncles
while the protein dataset has measurements for cells in granual layer,

http://symatlas.gnf.org
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molecular layer and purkinje cells of the cerebellum. The mapping
resulted in 21 common tissues/tissue pools, see Table S3.

2.5. Quality measure defined subsets

Quality measure defined subsets were generated in order to fil-
ter out genes for which noise and noise sensitivity would obscure
mRNA−protein correlations. Genes were partitioned into four equally
sized bins according to quartiles for each continuous mRNA qual-
ity measure, and also according to protein antibody validation. 16
mRNA−protein subsets were thus generated by intersecting each
mRNA subset with each protein subset. For more information on indi-
vidual subset sizes, see Table S5.

2.6. Global correlation of expression

Global correlation of expression was calculated using the entire
data of mapped tissues. This was done correlating mRNA expression
for all genes in all tissues with corresponding protein expression for
the same genes in the same tissues. In addition to doing this for the
entire data, the analysis was also performed for quality measure
defined subsets. More specifically, the correlation for the subset was
calculated using only the mRNA and protein expression for the genes
of the subset. Resampling based P-values were determined for each
subset by randomly sampling the same number of genes as found in
the subset. This resampling was repeated 10,000 times for each subset.
A z-score for the correlation of the subset was computed based on the
distribution of correlations in the random samples, and a resampling
p-value for the subset's correlation significance was computed from
the z-score.

2.7. Genewise correlation of expression

Correlation between protein- and mRNA expression for a gene was
calculated by correlating the protein expressionwith themRNA expres-
sion of that gene in the 22 tissues/tissue pools mapped between the
datasets. This was calculated for all genes common to both datasets.

2.8. Global correlation of coexpression

The global correlation of coexpression was calculated, similarly to
Shankavaram et al. (2007), by first calculating the coexpression for all
possible pairs of each quality subset, separately for mRNA and pro-
tein. Following that, the correlation between the mRNA−mRNA and
protein−protein coexpressions was calculated for all pairs where
both mRNAs and proteins existed in both datasets. For both the
mRNA data as well as the protein data, the coexpression correlation
was calculated using both mapped tissues, non-mapped tissues as
well as all tissues. The obtained correlation of coexpression is an indica-
tion of to what extent genes with coexpressed mRNA also have coex-
pressed proteins. Resampling based P-values were determined in the
same manner as for global correlation of expression.

2.9. Pairwise correlation of coexpression

The pairwise correlation of coexpression was obtained by first cal-
culating all pairwise coexpression correlations for one gene and all
other members of the quality subset the gene belonged to. This was
done separately for mRNA and protein data. Finally the correlation
of coexpression was obtained by calculating the correlation of mRNA
coexpression correlations with protein coexpression for that gene.
This was done for all genes. The obtained coexpression correlations
for a gene is an indication of to what extent the same genes with
which it has a coexpression of mRNA, it also has a coexpression with
on the protein level.
2.10. Global and pairwise correlation of coexpression restricted to
functional pairs

Global as well as pairwise correlation of coexpression was done
using only functionally coupled gene pairs. These were obtained by
taking all gene pairs connected by a link in FunCoup (Alexeyenko
and Sonnhammer, 2009) with a confidence above 0.25, after support
from mRNA and protein coexpression had been removed.

2.11. Generation of percentile scores

The correlation of true (corresponding) mRNA−protein profile
pairings was compared to false pairings, i.e. where anmRNA or protein
is compared with a non-corresponding protein or mRNA, respectively.
The placement of the true correlation in the distribution of all possible
false pairings was used to obtain the percentile score, i.e. how a large
proportion of the false pairs were closer to zero than the true correla-
tion. This was done for all genes and was used both for genewise corre-
lations of expression and similarly for pairwise correlations of
coexpression. For a globally fair comparison, the correlations in each
subset were compared to false pairs generated from the entire dataset.
As an example, even if themRNA for a gene has a high correlation of 0.9
to its protein, even higher correlations might exist to other proteins.
There may also be higher correlations between the protein of that
gene and the mRNA of other genes. Thus, even if the correlation
between mRNA and protein is high, it may not be significant.

2.12. Calculation of correlations

Calculations of correlation were done with the R (Ihaka and
Gentleman, 1996) functions cor()/cor.test() (with/without estimated
p-value) for pairwise complete observations. The Spearman correlation
was used throughout.

3. Results

Our goal was to establish the level of expression and coexpression
correlations between mRNA and protein on a global transcriptomic
and proteomic scale (Fig. 1), and to investigate principles that may
cause such correlations to be reduced. For mRNA expression we
used the Novartis database, measured on 79 tissue types, and for pro-
tein expression we used the HPA database, measured on 102 tissue
types. These data were generated by independent groups using tissue
samples from different individuals, hence the comparison is consider-
ably more challenging than in previous studies using single cell lines
or tissues. Because many of the tissue types differ between the data-
sets, we defined 22 tissue classes to which most of the data could
be mapped (Table S3). Before analyzing the mRNA−protein correla-
tion of expression and coexpression, we first validated both datasets
functionally to assert that they capture biologically relevant informa-
tion (Supplementary materials).

3.1. Global correlation of expression

Using the entirety of the tissue-mapped data, the global Spearman
correlation of expression between mRNA and protein was calculated
across the corresponding tissues. The resulting correlation was
merely 0.12 (pb2.2e-16) which is lower than observed in previous
studies but not surprising given the greater challenges of this study.
This correlation is probably affected by only having the four discrete
expression values in the protein data. For example, it might be posi-
tively affected by the predominance of zero expression (24.7% of the
protein data). While Spearman correlation is less sensitive to outliers
than Pearson correlation, such a bias can persist for discrete data like
the protein expression used here. In fact, looking only at non-zero
protein expression the correlation dropped to 0.08 (pb2.2e-16).
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Given the low global correlation, taking measures to reduce sources
of noise may lead to better results.

3.2. Designing quality measures for mRNA data

Sincemeasurement errors and sample differences are likely to intro-
duce noise, identifying a subset of genes where there is a higher capac-
ity to detect correlation if it exists should improve the results. By using
measures of quality, genes for which noise is likely to dampen correla-
tion could be filtered out. For the protein expression data, the validation
score that is provided for each HPA antibody was used as a quality
measure. A low HPA validation score may for instance be the result of
high cross reactivity. For the mRNA data, no quality or validation was
provided, but rationales exist to create such measures.

Some expression patterns might be problematic for estimating
correlation and can indicate poor quality. For example, a gene with
a very narrow expression interval (i.e. the same expression level in
all tissues) may obtain a low correlation because the effect of the
noise would be larger than the signal. When differences in expression
levels are relatively small between tissues, noise would bemore likely
to cause erroneous ranking than if the differences in expression levels
are relatively large. This can be gauged e.g. by the entropy of the
gene's expression values, the span between maximum and minimum
values, or by the standard deviation of the expression profile. Also,
genes with an overall low expression level suffer more from noise
effects, and therefore two genes with high levels of expression are
more likely to result in a more accurate correlation. Because of this,
mean ormedian expression level can be used as a qualitymeasurement.

The mRNA data consist of a set of one or more probes for each
gene and contain two biological replicates for each tissue. Ideally,
the measurements for the same gene in both replicates would be
the same. This can be measured by the correlation between the tissue
expressions in the two biological replicates and used as a quality
measure for each gene.

Different quality measures could capture different properties, and
a combination may be superior to any single measure. To investigate
the scope for this, we calculated the correlation between all measure
pairs across all genes (Table 1). This showed that some measures are
strongly correlated, for instance mean expression was strongly corre-
lated with both minmax and sd. To counteract this dependency we
normalized them by dividing with the mean expression, which in-
stead made them highly correlated with entropy. However, other
measure pairs were hardly correlated, for instance entropy and
mean expression, indicating that a combination of these two could
lead to further quality refinement.

3.3. Quality measures can improve mRNA−protein expression
correlation

Does a subset of genes with lower measurement noise have a
higher mRNA−protein expression correlation? To examine this, the
global correlation was calculated for subsets of genes based on the
different quality measures (Table 2). The subsets are of equal size
Table 1
Correlations between mRNA quality measures, across all genes in the mRNA expression dat
indicates a high interdependence.

Replicate correlation Mean expression Median expr

Replicate correlation 1.00 x x
Mean expression 0.59 1.00 X
Median expression 0.51 0.90 1.00
Span 0.63 0.84 0.62
Sd 0.66 0.86 0.64
Entropy 0.38 0.10 −0.19
Normalized span 0.31 0.09 −0.20
Normalized sd 0.36 0.10 −0.20
for mRNA data but not for protein data. As a general trend, the subset
combining the highest mRNA and protein quality had the highest cor-
relation, but in some cases where the difference between neighboring
subsets was small this did not hold.

As expected, a higher mean mRNA expression resulted in higher
mRNA−protein correlation. The best subset had a Spearman correla-
tion of 0.23 (pb2e-16). Entropy gave even higher correlation, 0.28
(p=9.90e-38). Replicate correlation resulted in a maximal correla-
tion of 0.19 (pb2e-16), but surprisingly it was found in the second
quartile (25−50%) and with moderate antibody quality. This may
be due to the fact that the replicated correlation in the highest quar-
tiles is almost 1.0, suggesting some sort of artifact such as outliers.
Median surprisingly had results quite different from mean which
could be due to differences in ranking profiles with e.g. bimodal
expression pattern.

As mentioned above, the quality measures mean expression and
entropy were largely independent, and were therefore combined
into a new measure called mean+entropy. This resulted in higher
correlations than using mean and information content separately.
As seen in Fig. 2, genes with a high mean+entropy mRNA quality
and high protein expression quality tend to have a higher correlation,
up to 0.31 (pb2e-16). The correlations of the subsets were compared
to distributions from randomly sampled subsets of equal size. As seen
in Table S7 the correlations for the highest and lowest quality subsets
are significantly higher and lower, respectively, than the correlation
for the entire data.

While 0.31 is still a fairly low correlation, it is substantially higher
than for the whole data set, showing that if coherent mRNA–protein
expression is present it can be extracted by restricting analysis to
higher quality subsets.

3.4. Genewise correlation of expression

Examining the correlation of entire datasets used as a pool of
measurements gives the overall correlation for all genes in a given
data(sub)set. It is of interest to stratify the dataset by single genes in-
stead, to investigate the distribution of mRNA–protein correlation
across all genes. Correlation of expression was calculated for all genes
using the expressions from the mapped tissues. The genes were parti-
tioned into the same subsets as above based on mean+entropy and
HPA antibody validation quality measures, and within each subset the
correlation distribution was generated. Fig. 3A shows the correlation
distribution for the subset with the highest quality in both mRNA and
protein expression. Although the average is only 0.32, about the same
as the global correlation for this subset, it is clear that many genes
have a considerably higher correlation, some even approaching 1.0.

Since the genewise correlations could suffer from some of the prob-
lems inherent to the global correlation, it might be prudent to not look
at the absolute correlation value, but instead how unexpected it is given
the dataset. mRNAs with an equally high or higher correlation to ran-
domly chosen proteins than to the corresponding protein are obviously
not biologically significant. Artificially high correlations could be caused
by biases inherent to the data such as outlier data points or small
aset. A correlation close to zero indicates independence whereas one close to 1 or −1

ession Span Sd Entropy Normalized span Normalized sd

x x x x x
X X X X X
X X X X X
1.00 X X X X
0.99 1.00 X X X
0.56 0.55 1.00 X X
0.57 0.53 0.96 1.00 X
0.56 0.55 0.99 0.98 1.00



Table 2
Global mRNA–protein correlations and their significance for quality measure defined subsets. The mRNA subsets (columns) were defined as quartiles using seven different quality mea-
sures, while the protein subsets (rows) were defined as antibody validation categories throughout. The highest correlation for eachmRNA quality measure is shownwith bold numbers.

Correlations P-values

Replicate correlation 0–25 26–50 51–75 76–100 Replicate correlation 0–25 26–50 51–75 76–100
V. low −0.03 −0.07 −0.05 0.01 V. low 0.14 1.18E-003 6.45E-002 7.09E-001
Low 0.02 −0.03 0.05 0.12 Low 0.13 1.12E-002 1.02E-005 1.17E-017
Moderate 0.04 0.19 0.12 0.08 Moderate 0.02 2.43E-034 2.15E-015 1.86E-010
High −0.01 0.17 0.16 0.14 High 0.72 6.45E-009 5.39E-011 2.80E-013

Mean expression 0–25 26–50 51–75 76–100 Mean expression 0–25 26–50 51–75 76–100
V. low −0.06 0.05 0 0.02 V. low 3.60E-003 1.80E-002 9.48E-001 6.06E-001
Low 0.02 0.03 0.07 0.12 Low 9.31E-002 6.85E-003 1.14E-007 2.29E-019
Moderate 0.08 0.1 0.1 0.12 Moderate 1.21E-007 3.34E-010 5.86E-013 1.99E-019
High 0.1 0.17 0.23 0.21 High 4.03E-003 2.24E-012 8.02E-022 1.59E-027

Median expression 0–25 26–50 51–75 76–100 Median expression 0–25 26–50 51–75 76–100
V. low −0.07 0 0.04 0.03 V. low 9.64E-004 9.29E-001 1.05E-001 3.10E-001
Low 0.03 0.04 0.05 0.12 Low 6.79E-003 4.06E-004 1.56E-005 1.57E-019
Moderate 0.06 0.07 0.03 0.02 Moderate 1.32E-004 2.51E-005 2.39E-002 1.44E-001
High 0.13 0.07 0.11 0.08 High 1.66E-005 5.07E-003 7.56E-006 1.11E-004

Entropy 0–25 26–50 51–75 76–100 Entropy 0–25 26–50 51–75 76–100
V. low −0.07 0 0.02 −0.09 V. low 1.31E-003 9.86E-001 3.79E-001 2.20E-003
Low 0.02 0.05 0.02 0.04 Low 1.46E-001 1.37E-004 1.14E-001 7.98E-003
Moderate 0.12 0.07 0.1 0.11 Moderate 6.55E-016 3.83E-007 6.12E-012 1.55E-013
High –0.02 0.08 0.24 0.28 High 5.46E-001 1.55E-003 1.78E-023 9.90E-038

Normalized span 0–25 26–50 51–75 76–100 Normalized span 0–25 26–50 51–75 76–100
V. low −0.06 −0.03 0.06 −0.12 V. low 1.60E-003 1.71E-001 1.26E-002 8.24E-005
Low 0 0.02 0.07 0.02 Low 7.81E-001 6.03E-002 7.95E-008 7.30E-002
Moderate 0.11 0.07 0.11 0.12 Moderate 2.87E-013 1.12E-006 4.50E-015 7.44E-015
High −0.06 0.14 0.21 0.27 High 1.98E-002 2.29E-009 2.92E-016 4.13E-035

Normalized sd 0–25 26–50 51–75 76–100 Normalized sd 0–25 26–50 51–75 76–100
V. low −0.06 −0.02 0.04 −0.11 V. low 1.73E-003 3.91E-001 1.49E-001 4.35E-004
Low 0.02 0.04 0.03 0.03 Low 1.44E-001 8.63E-004 7.66E-003 3.28E-002
Moderate 0.12 0.05 0.12 0.12 Moderate 1.81E-016 2.93E-004 1.91E-016 1.76E-014
High −0.01 0.08 0.27 0.26 High 6.13E-001 1.60E-003 3.88E-029 1.34E-032

Mean+entropy 0–25 26–50 51–75 76–100 Mean+entropy 0–25 26–50 51–75 76–100
V. low −0.13 0 −0.05 0.08 V. low 1.57E-011 9.39E-001 5.93E-002 3.78E-002
Low 0 −0.02 0.08 0.12 Low 8.73E-001 9.41E-002 3.30E-010 4.20E-019
Moderate 0.07 0.13 0.18 0.16 Moderate 8.97E-006 1.95E-016 2.01E-037 1.70E-031
High −0.01 0.19 0.25 0.31 V. low 8.52E-001 1.63E-010 1.22E-026 3.49E-057
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number of data points. In order to examine this problem the correlation
between each true mRNA–protein pairs was compared to the correla-
tions of all false mRNA–protein pairs of the same mRNA and protein.
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Fig. 2. Global correlation of mRNA–protein expression for 16 subsets of different qual-
ity. The Spearman correlations were obtained from all mRNA–protein expression level
pairs of the same gene and tissue for each subset. The mRNA subsets on the x-axis are
defined by the combined mRNA quality measure mean+entropy (combined rank of
mean expression and entropy), which gave the largest improvement in correlation.
For protein quality, HPA antibody validation score was used as quality measure,
shown by increasing line thickness.
This was used to obtain percentile scores for all genes, i.e. the percent-
age of the false pairs with a correlation lower than the true pair.
While one would expect the correlation of the true pair to be higher
than all false pairs, this may not happen due to either noise or other
strongly coexpressed genes, e.g. complex members, that also have
high correlations. Since it is difficult to estimate what would be
expected by chance, picking a cutoff for significance is not possible.
However, conclusions can still be drawn from the distribution of
percentile scores.

Fig. 3B shows the percentile distribution for the highest quality
subset based on mean+entropy and HPA antibody validation quality
measures. The curve has a sharp peak at 90% with a steep decline
toward 100%, and surprisingly no true mRNA–protein pairs were
ranked highest. The fact that most of the density is below the 95th per-
centile suggests that there is a high degree of noise, causing false
mRNA–protein pairs to often be ranked higher than the true pairs.
With this type of analysis it would however be possible to extract
genes that have the highest correlation relative to what is expected by
chance.

3.5. Global correlation of coexpression

An alternative way to analyze the concordance between mRNA
and protein expression is to look at the correlation of coexpression,
or second-order correlation of expression (Dutilh et al., 2006;
Shankavaram et al., 2007; Zhou et al., 2005). This can be seen as an
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Fig. 3. A. Distribution of genewise mRNA–protein expression correlations for the subset
with the highest mRNA and protein quality in Fig. 2. Distribution for true pairs of mRNA
and protein corresponding to the same gene is shown with a solid line. Distribution for
false pairs of mRNA and protein corresponding to different genes is shown with a
dashed line. Other subsets have a similar distribution shape but are shifted to the
left. B. How often does the true mRNA–protein pair have a higher correlation than
false pairs with the same mRNA or protein? Shown is the distribution of percentile
scores for true mRNA–protein pairs, i.e. each true pair's correlation's rank as a percent-
age of all false pair ranks. If the true pair is ranked highest then the percentile score
would be 100. The plot is for the subset with the highest mRNA and protein quality
in Fig. 2. Other subsets have a similar distribution shape but are shifted to the left.
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Fig. 4. Global correlation ofmRNA and protein coexpressions, i.e. second order expression
correlation, for the same 16 quality subsets as in Fig. 2. The correlations were obtained by
first calculating coexpression of pairs within the mRNA and protein datasets separately.
The mRNA–protein correlation was then obtained as the global correlation of pair–pair
correlations for all mRNAs and proteins in the subset.
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orthogonal approach to direct expression correlation, as it first ana-
lyzes coexpression of pairs within the mRNA and protein data sepa-
rately, and then analyzes the pair–pair correlations between the
datasets. Coexpression correlation has some advantages. Because
the mapping between mRNA and protein is done by pairs, there is
no need to restrict the tissues used to the intersecting subset. In
fact, the approach would work even with zero overlap between tis-
sues sampled for mRNA and protein.

After verifying that coexpression from each dataset carries func-
tional information (see Supplementary materials), the global correla-
tion of coexpression was calculated for the same subsets as for
expression correlation (Fig. 4) and compared to randomly sampling
the data (Table S8). As expected, the trend of increasing correlations
for higher quality subsets was observed here as well. The correlations
were however higher and more significant for most of the higher qual-
ity subsets. The highest Spearman correlation was 0.32 (pb2e-16),
substantially higher than the correlation of 0.06 obtained using the
entirety of the data. We redid the analysis for mapped tissues only
which gave lower correlations, maximally 0.22 (pb2e-16) (Table S4).
Redoing it for only nonmapped tissues gave similar correlations as
withmapped tissues only. This suggests that the correlation is indepen-
dent of whether the tissues intersect or not, but depends on the total
amount of data. On a global scale, mRNA–protein coexpression appears
to be at the same level as expression.

3.6. Coexpression limited to functionally coupled genes

Coexpression correlation using all possible pairs suffers from the
problem that most genes are not functionally related to each other
and are therefore not coexpressed. All functionally unrelated pairs
introduce noise to the global correlation. The simple approach of
restricting the between-set comparison to pairs with a high coexpres-
sion in either mRNA or protein would likely result in an artificially
high correlation of coexpression, hence it is not suitable. However,
restricting the analysis to only consider “true” pairwise coexpression
correlations, e.g. supported by a functional coupling, would be a reason-
able way to reduce the noise.We redid the analysis restricting the coex-
pression correlations to those pairs supported by a link in FunCoup
(Alexeyenko and Sonnhammer, 2009) with confidence above 0.25.
Due to the sparsity of the network the data was severely restricted,
resulting in correlations thatwere only significant in the highest quality
bins (Table S6). The global correlation for the best subset obtained in
this manner was 0.49, substantially higher than when considering all
pairs, thus confirming that noise from non-related pairs can reduce
the correlation.

3.7. Pairwise correlation of coexpression

Pairwise correlation of coexpression can be calculated in a similar
way as genewise correlation of expression. This way we can analyze
the distribution of correlations across all pairs. It was not possible to
restrict this analysis to functionally coupled pairs due to the sparsity
of the network because this resulted in too few data points per
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gene. Fig. 5A shows the correlation distribution for the subset with
the highest quality in both mRNA and protein expression. The aver-
age was 0.28, slightly lower than the average genewise correlation,
probably due to the lack of very high correlations found in the gene-
wise analysis.

To assess how unexpected the observed coexpression correlations
are, we calculated percentile scores in the same manner as for expres-
sion, i.e. each true pair's correlation was expressed as the percentage
of false pairs ranking below it. Compared to the genewise analysis, the
Percentile
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Fig. 5. A. Distribution of pairwise (mRNA–mRNA)–(protein–protein) coexpression corre-
lations for the subset with the highest mRNA and protein quality in Fig. 4. Distribution for
true pairs ofmRNA and protein corresponding to the same gene is shownwith a solid line.
Distribution for false pairs ofmRNA and protein corresponding to different genes is shown
with a dashed line. Other subsets have a similar distribution shape but are shifted to the
left. B. How often does the true (mRNA–mRNA)–(protein–protein) pair have a higher cor-
relation than false pairs with the same mRNA–mRNA or protein–protein pair? Shown is
the distribution of percentile scores for true pairs, i.e. each true pair's correlation's rank
as a percentage of all false pair ranks. If the true pair is ranked highest then the percentile
score would be 100. The plot is for the subset with the highest mRNA and protein quality
in Fig. 4. Other subsets have a similar distribution shape but are shifted to the left.
pairwise correlation of coexpressionwas strongly shifted toward higher
percentile scores in the higher quality subsets. For the highest quality
subset (Fig. 5B), almost all pairs are above the 95th percentile. This
suggests that although the absolute average pairwise correlations are
somewhat lower than the genewise, they are considerably more robust
in the sense that they are much less expected by chance.

4. Discussion

Wehave explored the distributions ofmRNA–protein correlation for
expression and coexpression using two large-scale tissue-based data-
sets. While most cases have a low correlation, the variation is high
and some do have a high correlation. To exploit this we devised and
benchmarked a number of quality measures that can define subsets of
highly correlating genes/proteins and pairs. The most useful quality
measures were based on either the magnitude or the variation of
expression.

There are both technical and biological reasons why one would
expect such quality measures to correctly identify subsets where co-
herence between mRNA and protein is greater. Such profiles would
be less sensitive to noise. Additionally, if the mRNA level is generally
high and varies greatly, this could indicate that a lot of energy is spent
on regulating mRNA levels, which only makes sense if there is a direct
connection between mRNA level and protein abundance.

The primary reason for low quality data for both mRNA and protein
are noise levels that interfere with accurate estimation of low expres-
sion levels (Shankavaram et al., 2007). This includes measurement
errors, different degrees of translational and post-translational regula-
tion of protein abundance, sample collection issues, biological variation
and systematic biases. In our study, using the semi-quantitative HPA
protein expression measurements provided much higher coverage of
genes than other resources, but the fact that it only provides four
discrete expression levels can be a drawback for correlation analyses.
As long as the four values are more or less equally represented (which
is the case in HPA) this is not a problem, but if nearly all points were
assigned to one value, then even the Spearman correlation would
become unreliable.

Correlation of coexpression was found to be more robust than the
correlation of expression in the sense that the coexpression pairs
were much more likely to be true than for expression. Still, the global
correlation was not higher for coexpression. The reason for this is
simply that the global correlation is mostly based on mRNA–mRNA
and protein–protein pairs that are not functionally related, and there-
fore have a low correlation. We managed to alleviate this effect by
restricting the analysis to functionally coupled pairs but this approach
is limited by the amount of known and predicted protein interactions.

Coexpression carries an advantage in that mRNA and protein can be
compared with less regard to overlap of conditions between datasets.
Also, it is likely less sensitive to systematic differences between samples
and measurements. Even with systematic errors in one dataset, coex-
pression should be detectable for gene pairs with a strong functional
coupling. Unless systematic errors are the same for both protein and
mRNA, the errors will have a larger effect on expression concordance.

The technical limitations on the measurements could dampen the
ability to detect concordance. The measurements are performed on
the level of tissues, averaged over multiple cell types. This may dilute
a strong signal stemming from a single distinct cell type in an organ
made up of many cell types. In fact, anything larger than single cell
measurement enforces an averaging and signal dilution. Also, splice
forms are not accounted for in the datasets which could result in
over- or underestimation of the true expression levels.

Entropy is by itself not an ideal quality measure. The highest (neg-
ative) entropy (0) is measured for genes expressed only in one tissue.
Such expression profiles would be sensitive to show false correlation
to non-related genes with high expression in that tissue. This exem-
plifies why it is advantageous to examine percentile scores instead



236 G. Östlund, E.L.L. Sonnhammer / Gene 497 (2012) 228–236
of the raw correlations. However, by combining the mean and entro-
py quality measures this can largely be avoided because the mean ex-
pression counteracts the entropy's preference of fewer tissues with
expression.

While external validation would be desirable to show generalizabil-
ity of the presented approach, the lack of other large-scale datasetswith
mRNA or protein expression acrossmultiple tissues renders this impos-
sible. One can however generate subsets usingmultiple-tissue data and
apply the sets to independent single-tissuemRNA and protein data.We
applied the subsets defined by the datasets in this study to single-tissue
data from Schwanhäusser et al. (2011). The lower quality sets showed
significantly lower mRNA–protein correlations than expected (see
Supplementary materials), showing that the quality subsets can be
used to avoid low coherence genes. This serves as a partial confirmation
that the sets are generalizable for global expression correlation. Unfor-
tunately single-tissue data cannot give information about genewise or
coexpression correlations.

There are several problems when comparing multiple-tissue with
single-tissue mRNA–protein correlations. Even if a gene across many
tissues generally has a high mRNA–protein concordance, one would
not necessarily expect a high concordance in every single tissue. In
any given tissue, the gene might not be expressed, be expressed in
only in a subset of cells or have post-transcriptional regulation specific
to that tissue. Additionally, properties such as tissue-specific translation
efficiency can strongly affect the correlation within one tissue but
would have less impact across multiple tissues. Thus while we would
expect the high-quality sets to be more reliable in general, it would
not necessarily hold true for each single tissue.

Previous work has shown that protein abundance is only partly
regulated through mRNA abundance. Therefore one should always
be cautious when using mRNA as a proxy for protein abundance.
We have here shown that it is possible to identify subsets with great-
er coherence between mRNA and protein abundance by restricting
the analysis to genes with a high quality score. This can help reduce
the danger of drawing erroneous conclusions for genes with low
mRNA–protein concordance.
Appendix A. Supplementary data

Supplementary data to this article can be found online at doi:10.
1016/j.gene.2012.01.029.
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