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Abstract
Orthology is one of the most important tools available to modern biology, as it allows making inferences from easily
studied model systems to much less tractable systems of interest, such as ourselves. This becomes important not
least in the study of genetic diseases.We here review work on the orthology of disease-associated genes and also
present an updated version of the InParanoid-based disease orthology database and web site OrthoDisease, with
14-fold increased species coverage since the previous version.Using this resource, we survey the taxonomic distribu-
tion of orthologs of human genes involved in different disease categories. The hypothesis that paralogs can mask
the effect of deleterious mutations predicts that known heritable disease genes should have fewer close paralogs.
We found large-scale support for this hypothesis as significantly fewer duplications were observed for disease
genes in the OrthoDisease ortholog groups.
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INTRODUCTION
Orthology
The increasing availability of completely sequenced

genomes of model organisms and their use in com-

parative genomics allows us to further understand

genes and the processes they take part in. A subset

of genes that is of major importance are disease

genes. This can mean either genes that are targets

for bacterial or viral exploitation, or genes where

defective alleles have been identified as the cause of

diseases. The exploration of the underlying evolu-

tionary processes affecting these genes, as well as

mapping them to functionally equivalent genes in

model organisms to create disease models, enables

many relevant applications such as drug design.

To find genes in one species that play a function-

ally equivalent role to particular genes in another

species, biologists search for orthologous genes.

Orthologs are homologous genes that diverged by

a speciation event [1]. In contrast, paralogs are

homologs that diverged by a gene duplication

event. Moreover, in the context of a given species

comparison, paralogs are further divided into genes

that arose through gene duplication events predating

the last common ancestor of the pair of species in

question, called outparalogs, and genes that arose

through gene duplication after the two lineages

diverged, called inparalogs [2, 3]. A gene that has a

recent same-species duplicate may still be ortholo-

gous to a gene in another species, and it will share

this co-ortholog status with its inparalog(s). Since the

ancestral function can be expected to be retained to a

high extent, the functions represented by the set of

group members in each lineage should be roughly
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the same, whereas outparalogous genes are expected

to functionally have diverged relatively more.

The process of orthology assignment involves the

correct identification of ortholog groups between

species. Ortholog groups between two species can

be seen as each descending from a single gene in

the last common ancestral species, with one or

more genes found in the two extant species. Genes

from the same species in an ortholog group are inpar-

alogous to each other, while genes from different

species are orthologous to each other. Homologous

genes in different groups are outparalogous to each

other, since they diverged previous to the speciation.

Orthology assignment approaches
In general, there are two different approaches to as-

signing orthology: tree- and graph-based methods.

Tree-based methods try to reconcile gene trees

with a species tree by labeling the internal nodes of

the gene tree as either speciation or duplication

events. This approach is generally computationally

expensive [4].

Graph-based approaches perform all versus all

searches of all input genes using a sequence similarity

search tool, such as BLAST [5]. Pairs of genes, one

from either species, that are each other’s highest

scoring match in this search (reciprocal best hits)

are considered edges in a graph. Ortholog groups

can be detected in the graph by finding cliques of

interconnected nodes. However, it is not trivial to

extend these groups with inparalogs, and several

algorithms have been developed to this end. The

graph-based approach can sometimes be misleading,

such as when a gene loss has occurred. [2, 6–8].

Examples of graph-based implementations include

COG [9], ORTHOMCL [10], OMA [11] and

InParanoid [12].

We have continued to use InParanoid as the

underlying orthology inference tool for the second

release of OrthoDisease for several reasons. Its rela-

tively low computational cost allows its application

to the largest eukaryotic genomes, and to fairly large

sets of species. Moreover, few other tools provide

such a clear mapping of orthologous, inparalogous

and outparalogous relationships between genes.

Databases of human disease orthologs
The study of sequence changes associated with

human diseases has accumulated and produced a

large body of literature. This information has been

combined and organized into databases such as

Online Inheritance in Man (OMIM) [13],

LocusLink [14], the Human Gene Mutation

Database [15] and Genecards [16]. OMIM is a

widely used catalog of human diseases and their

phenotypes. It lists heritable diseases along with

genes whose mutations have been associated with

disease or other phenotypes.

Human disease genes are difficult to elucidate

functionally by direct study. For many types of mo-

lecular functions, it is more fruitful to study their

orthologs in model organisms [17]. To assist such

studies, a number of databases have been developed

to map disease genes to orthologs. These are listed

in Table 1 and include Homophila [18], EGO

(previously TOGA) [19] and OrthoDisease [20].

In general, the construction of these databases

usually involves two steps. First, a set of disease genes

of interest is extracted from a database of human

diseases such as OMIM and is mapped to the corres-

ponding protein sequences. Once a set of protein

sequences of human disease genes is assembled, dif-

ferent approaches are used to find human orthologs

in target species. The Homophila database was

Table 1: Overview of existing databases of disease orthologs

Database URL No. of
species

Analyzed
OMIM
entries

Disease
information
source

Ortholog
identification
approach

Distinguishes
inparalogs from
outparalogs?

Homophila http://homophila.sdsc.edu (defunct) 2 1858 OMIM Best Blast hit
against Drosophila
melanogaster

No

EGO (formerly
TOGA)

http://compbio.dfci.harvard.edu/tgi/ego/ 90 Not given OMIM Reciprocally best
Blast hit

No

OrthoDisease 2.0 http://orthodisease.sbc.su.se/ 100 2935 OMIM InParanoid
(algorithm version 4)

Yes

The table lists information about the database name, the number of species, the source of disease information, the number of analyzed OMIM
entries, the ortholog identificationmethod andwhether the database distinguishes between inparalogs and outparalogs.
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constructed based on the best (one-way) BLAST hits

in pairwise species comparisons, whereas the EGO

database defines orthology on the basis of the best

reciprocal (two-way) BLAST hit. OrthoDisease was

built using the InParanoid algorithm.

InParanoid orthology inference starts by consider-

ing reciprocal best matches, but applies additional

criteria to rule out sources of errors or inconsistencies

such as fragmentary matches, which are avoided by

requiring that matches must be longer than a certain

fraction of the length of the proteins. In a subsequent

step, the resulting ortholog groups are expanded by a

set of empirically optimized rules to identify inpar-

alogs of the seed orthologs. A third step may merge

or split groups in some cases to produce the final set

of group assignments. See [12] for the full algorithm

in its most recent form.

Properties of disease-associated genes
The use of model organisms allows study, through

experimentation and observation, of the underlying

mechanisms of biology, including disease [21]. This is

relevant for a wide range of species, as for example

even the distantly related yeast includes orthologs of

22% of human disease genes in the updated

OrthoDisease database presented here.

Beside locating suitable model systems to study

disease mechanisms, we can explore whether disease-

associated genes have any distinguishing characteris-

tics. Previous comparisons of genes with and without

disease annotations have revealed a number of

trends, which are reviewed by Dalkilic et al. [22].

Among other things, disease-associated genes tend

to be longer on average. They also tend to be

more likely to have homologs in distant species,

but less likely to have close paralogs than

non-disease-associated genes [22].

‘Paralog compensation’ refers to the case when

some or all roles of a loss-of-function mutant gene

may nevertheless be filled by duplicates of that gene.

A survey by Lopez-Bigas and Ouzounis [23] of the

properties of disease-associated genes observed that

human genes with many paralogs were less likely to

be associated with diseases, and attributed this finding

to a mechanism of paralog compensation. Under this

model, which we call Scenario 1 (Figure 1), even if a

gene is mutated so that its function is lost or reduced,

a sufficiently recent duplicate gene may still retain

enough vestiges of the ancestral function for the

pathway to function, reducing the fitness impact of

the mutation. If this effect is strong enough, a disease

phenotype might never be observed and no disease

association will be recorded. It should be noted,

however, that Lopez-Bigas and Ouzounis [23] did

not distinguish between inparalogs and outparalogs.

Under an alternative model, which we call

Scenario 2 (Figure 1), paralog compensation would

have the opposite effect on gene–disease association.

By reducing the fitness impact of the mutation, the

defective allele would become less likely to be

purged from the gene pool, and thus more likely

to be observed by disease geneticists. Under this

model, we would expect a greater proportion of dis-

ease genes in larger ortholog groups, at least for

closely related species. In O’Brien et al. [20], data

from three species indicated that disease genes are

found more often in larger ortholog groups, i.e.

with more same-species inparalog ‘siblings’, which

would be consistent with paralog compensation

acting under Scenario 2.

Gene essentiality may be thought of as in one

sense opposite to disease gene involvement. A gene

is essential if its disruption causes complete lethality

or sterility to the organism. Systematically determin-

ing gene essentiality is not possible in human, but has

been done in several other species, including yeast

[24], worm [25] and mouse [26]. As mutants defi-

cient in essential genes do not procreate, nonfunc-

tional variants of such genes should be rare or

nonexistent in the gene pool. Deleterious mutations

of essential genes should only rarely be associated

with known genetic diseases, as mutants would be

non-viable. While not every mutation to an essential

gene might disrupt gene function enough to be

lethal, this still makes the proportion of mutations

resulting in a viable but noticeable disease phenotype

lower, and should deplete essential genes from dis-

ease associations. We would thus expect traits asso-

ciated with nonessentiality to be enriched among

disease genes.

It should be noted that the above reasoning applies

only to loss of function mutations. Gain of function

mutations should normally not be subject to paralog

compensation. Any trend we observe is thus likely to

derive from disease genes with loss of function

mutations.

Contents of present study
Here we present an updated version of the

OrthoDisease disease orthology database containing

groups of disease gene orthologs between human

and 99 other species, ranging from chimpanzee to
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Escherichia coli. We updated OrthoDisease using the

latest version of InParanoid, which increased the

number of species by a factor of 14 (7 versus 100

species) and improved the accuracy of the underlying

orthology inferences through increased robustness to

error sources such as low-complexity sequence re-

gions or fragmentary matches.

Furthermore, we used OrthoDisease as a basis for a

survey of the taxonomic distribution of distinct cate-

gories of disease genes. We also investigated whether

genes with close paralogs are more or less likely to be

associated with disease.

METHODS
Updating the OrthoDisease database
The InParanoid database
Information on gene orthology was taken from ver-

sion 7 of the InParanoid database [12]. This more

recent version has both improved coverage (to 99

eukaryotes and 1 prokaryote) and accuracy, through

more stringent filters for fragmentary matches during

the sequence comparison step as well as adaptions to

reduce false positive matches due to sequence regions

that have low complexity or a very biased compos-

ition [27].

Disease gene information
We used the OMIM database as a resource for disease-

annotated genes that have been implicated or shown

to be mutated in diseases. OrthoDisease includes

all OMIM entries of type phenotype or geneþpheno-
type, excluding pure gene entries as well as entries

corresponding to nondisease phenotypes such as hair

or skin pigmentation (entries in square brackets in

the MorbidMap). This filtering was performed using

information from the OMIM MorbidMap (ftp://ftp

.ncbi.nih.gov/repository/OMIM/morbidmap),

downloaded on 18 February 2011. To link OMIM

entries to the Ensembl Gene IDs used by InParanoid

to index human genes, mappings were taken from

the UniProt flatfile (ftp://ftp.uniprot.org/pub/

databases/uniprot/current_release/knowledgebase/

complete/uniprot_sprot.dat.gz), downloaded on

18 February 2011. All information is stored in SQL

Figure 1: Possible effects of paralog compensation on the likelihood that a gene is disease associated. Suppose a
gene with no paralogs is mutated. If it is completely disabled, the mutant allele is likely removed through strong
negative selection. If function is merely impaired, chances of a disease allele remaining is higher. Close paralogs may
however be able to fulfill the function of a defective gene, which would decrease the chance of purging the mutant
from the population. Under Scenario 1, this paralog compensation is strong enough to obscure the mutation’s
effect entirely, so that no fitness decrease occurs. The mutant allele will thus remain in the population, but will not
be known as a disease gene. Under Scenario 2, the paralog compensation is less complete, with enough fitness de-
crease to make the mutant a target for disease genetics, and thus potentially become known as a disease gene,
but not enough fitness decrease for it to have been completely removed by negative selection yet.
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tables for easy access and data analysis, and is made

available to the user community through a web

server. An outline of this workflow can be seen in

Figure 2.

The OMIM diseases were grouped into 22 cate-

gories according to Goh et al. [28]. We however

excluded the categories ‘multiple’ and ‘unclassified’

in the analysis.

RESULTSANDDISCUSSION
OrthoDisease online
All InParanoid groups with disease annotations may

be accessed through the web server OrthoDisease

(http://orthodisease.sbc.su.se), with a number of dif-

ferent interfaces available to the user. It is possible to

search for orthologs of genes involved in particular

diseases, in one or all model organisms, as well as

to list all disease gene ortholog groups that exist be-

tween human and a particular species. Furthermore,

the web server provides gene identifier, OMIM

number and free text search options. Additionally,

the download view allows the user to download all

disease gene ortholog groups between human and

another species as a file.

Each disease gene ortholog group in OrthoDisease

consists of the seed ortholog pair and, possibly, a set

of genes inparalogous to the seeds. For each gene

in the group, an inparalog score is provided that

corresponds to the certainty of its inclusion.

OrthoDisease content
As of February 2011, OrthoDisease contains 2935

distinct human disease phenotypes from OMIM,

mapped to 2313 out of 21 673 human genes and

their orthologs in 99 other species. Supplementary

Table 1 shows the distribution across species. The

raw numbers of disease gene orthologs mainly reflect

proteome size as well as evolutionary proximity,

with the plants and, curiously, the lancelet

Branchiostoma floridae at the top. For the plants, this

generally reflects multiple whole-genome duplica-

tions multiplying the number of orthologs of some

early genes that later came to be disease associated

in human. The lancelet is a chordate that diverged

from the lineage that led to the jawed vertebrates

before a series of whole-genome duplications

in that lineage [29]. This tiny chordate split

from the vertebrate lineage over 500 million years

ago, yet the available proteome is the largest among

the animals. Potentially, this may be an artifact

of poor genome sequencing, assembly and

annotation.

An example of the view provided by the web

interface is shown in Figure 3. The human

Figure 2: Outline of the main steps in the construction of the OrthoDisease database. Disease information is
taken from the OMIM database and is mapped to Ensembl IDs with the help of UniProt. It can then be assigned to
the genes in the ortholog groups inferred by InParanoid.
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SPTBN2 gene is present in OrthoDisease because

mutations in it lead to spinocerebellar ataxia. The

entry contains detailed information about the pro-

tein’s function, the disease and external identifiers.

The corresponding InParanoid ortholog group

contains three human genes and one gene in

Caenorhabditis elegans. Phenotypes resulting from a

knockout of this gene in worm would thus be rele-

vant for all its human orthologs. For genes associated

with more than one disease phenotype, a separate

view is available for each association.

Taxonomic and disease category
distribution of disease orthologs
We selected a set of representative model organisms

and ordered them according to their evolutionary

separation from human according to the NCBI

Taxonomy common tree. Figure 4 shows the

fraction of human disease-associated genes and

nondisease-associated genes with orthologs in a se-

lection of model organisms. This indicates whether

the system components are ancestral (and well con-

served) to the two species or not. Not surprisingly,

the more distantly related the species have fewer

orthologs, both with and without disease associ-

ations. Strikingly, human genes with disease associ-

ations are more likely than genes without disease

associations to have orthologs, in 95 of 99 species.

This is in agreement with the findings of Lopez-

Bigas and Ouzounis [23]. Potentially, this reflects

the fact that disease genes with orthologs are

more amenable to study, and thus more likely to

have been recorded in the databases. Also, since

disease genes are more studied they may contain

fewer errors that could obfuscate orthology

relationships.

Figure 3: This example entry from the OrthoDisease web site lists the human SPTBN2 gene, which is associated
with spinocerebellar ataxia. The upper part of the entry gives detailed information about the gene along with
disease-related information. The lower part shows the InParanoid group the gene belongs to. This group has three
members in human and one member in C. elegans. For each gene present in the orthology group, the Inparalog
score reflects the certainty that the gene is a group member, while the bootstrap score reflects the certainty
that the seed orthologs are correctly chosen.
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For a given disease gene, how likely is it to have

an ortholog in a given non-human species, and how

does this chance vary between disease categories and

over evolutionary separations? Figure 5 shows, in the

form of a heatmap, the presence of disease gene

orthologs in selected species for each of the 20 dis-

ease categories. Disease genes in the metabolic cat-

egory retain a considerably larger fraction of

orthologs in the more distant species than other cate-

gories; evidently, these are very ancient functions. In

most other categories the distant species have much

fewer orthologs, indicating more recent functions.

For instance, a group of six categories including im-

munological, bone and psychiatric drops sharply

when leaving the vertebrates. This correlates well

with vertebrate physiology.

Number of inparalogs of disease genes
Again, by disease genes, we mean human genes with

an OMIM disease annotation. Do disease genes

differ from non-disease genes in how many human

inparalogs they typically have?

We considered a random model where every

human gene has an equal chance of being a disease

gene, taken as the ratio of disease genes to all human

genes included in the experiment. For each species

comparison, ortholog groups were retained, but

human disease gene annotation status was rando-

mized, by randomly assigning genes as disease asso-

ciated while maintaining the same fraction of disease

genes as in the original data set. The average number

of inparalogs of all disease and nondisease genes was

computed from 1000 such randomizations of the

data set and compared with the original observed

values. This provided a test for whether the observed

numbers of inparalogs for the different classes of

genes was significantly different from those produced

by a random model of this type.

As seen in Supplementary Table 2, the observed

average number of inparalogs of nondisease genes is

much higher than for disease genes. Randomization

testing generally fails to produce this difference in the

numbers of inparalogs. Hence, disease genes have

significantly fewer human inparalogs than nondisease

genes when compared with the null model of uni-

form disease gene distribution, implying that large

ortholog groups with many human inparalogs are

depleted, or smaller ortholog groups enriched, for

Figure 4: The fraction of human genes with and without disease association that have InParanoid orthologs in
selected species.
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Figure 5: Heat map displaying the fraction of genes in each disease category that have orthologs in each model
species.
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disease genes. Figure 6 shows for selected species the

ratio of the average number of disease gene inpara-

logs to the average number of inparalogs of all genes,

and the equivalent ratio for nondisease genes. For 94

of the 99 species, the average number of inparalogs

was significantly lower for disease genes than for

nondisease genes. Thus, disease-associated genes

tend to have significantly fewer inparalogs.

It was previously reported [20] that ortholog

groups containing disease genes were enriched

for groups with more than foure members, which

seems to conflict with what we observe here.

However, from a statistical perspective, ortholog

groups containing one or more disease genes are ex-

pected to be enriched for larger groups even when

randomly assigning disease annotation status to

genes. The reason is that larger groups contain

more genes that could conceivably be annotated

with a disease. Thus, even if genes in larger groups

are individually less likely to be disease annotated

than those in smaller groups, the likelihood of find-

ing one such gene in a larger group would still be

increased. This is merely a statistical effect, which was

previously misinterpreted because no control was

made. A control randomization experiment similar

to the one we report above (data not shown) shows

that OrthoDisease groups containing at least one

disease-annotated gene are significantly smaller on

average than they would be under a model of disease

annotation randomly distributed across genes regard-

less of group size. We believe that this explains the

misleading results of the previous study.

CONCLUSION
We have updated the OrthoDisease database both in

terms of species and orthology prediction accuracy.

We increased the species coverage to the 100

included in the most recent version of the

InParanoid database to allow more detailed studies

of the distribution of human disease orthologs over a

wide taxonomic range.

If no paralog compensation had occurred at all, we

would have expected from our null model to see a

Figure 6: Average number of human inparalogs of genes with and without disease annotations, respectively. On
theY-axis is shown the ratio of the average number of human inparalogs of genes of either category, normalized by
the average number of human inparalogs across all genes in each species comparison. An asterisk following the
species name indicates that the difference in average number of inparalogs between genes of the two categories is
significant at P< 0.05 under a randomization test.
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uniform distribution of disease genes across ortholog

group sizes. Alternately, under our two scenarios of

paralog compensation, Scenario 1 predicted that

large ortholog groups would be depleted for

known disease genes, whereas they would be en-

riched under Scenario 2. This enrichment would

come from reduced selective pressure on large ortho-

log groups to lose disease genes compared with that

of singletons or small ortholog groups. We have

shown that, for the genes included in

OrthoDisease, there is no statistical support for

larger ortholog groups, where lineage-specific gene

duplication has occurred to a greater extent, to be

enriched for disease genes. Instead, we found statis-

tically supported evidence for the reverse trend

where less duplicated genes more often are associated

with an OMIM genetic disease entry. We are thus

able to validate the observation of López-Bigas and

Ouzounis [23] on a much larger data set, even when

distinguishing between in- and outparalogs. From

this, we conclude that paralog compensation is a

relevant factor in disease gene evolution, and that

its mechanisms and effects predominantly are those

we described as Scenario 1—paralogs may reduce

disease phenotypes and thus make observation and

study of a distinct disease associated with the muta-

tion less likely.

Another possible reason behind the depletion of

disease genes in large ortholog groups could be re-

search bias—it may be easier for geneticists to discern

disease—gene associations for non-duplicated genes.

From a population genetics perspective, each gene

duplication represents a recombination event in a

single individual, which may spread in the popula-

tion either by chance or by increasing fitness. The

likelihood of this should be smaller if the original

individual was carrying a defective allele of the dupli-

cated gene. As the particular duplication was indeed

fixed in the population, it makes sense that dupli-

cated genes are depleted for disease alleles. Further

population genetic analysis might shed light on this

issue, particularly as it applies to diploid genomes.

The bias toward non-duplicated disease genes may

also reflect the poor understanding of complex dis-

eases, that are caused by a combination of many

weakly defective gene alleles. This would be the

case if such diseases preferentially tend to involve

systems involving many redundant genetic pathways

resulting from gene duplications. If progress is made

toward mapping causative genes in complex diseases,

this bias may be diminished.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key points

� When exploring genes associated with genetic diseases, know-
ledge of their orthology relationships is important, not least for
the purpose of selecting suitablemodel systems.

� Wepresent a revision of theOrthoDisease (http://orthodisease.
sbc.su.se) database to provide this information, based on disease
information from OMIM and orthology relationships between
human and 99 other species from InParanoid.

� Disease-associated genes have significantly fewer inparalogs
than other human genes. This may be because close homologs
retain vestiges of their shared ancestral function, so that muta-
tions disabling onlyone of them still does notresult in a clear dis-
ease phenotype.
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12. Östlund G, Schmitt T, Forslund K, et al. InParanoid 7: new
algorithms and tools for eukaryotic orthology analysis.
Nucleic Acids Res 2010;38(Suppl. 1):D196–203.

13. Hamosh A, Scott A, Amberger J, et al. Online Mendelian
Inheritance in Man (OMIM), a knowledgebase of human
genes and genetic disorders. Nucleic Acids Res 2005;
33(Suppl. 1):D514–17.

14. Pruitt KD, Maglott DR. RefSeq and LocusLink:
NCBI gene-centered resources. Nucleic Acids Res 2001;29:
137–40.

15. Stenson PD, Ball EV, Howells K, et al. The Human Gene
Mutation Database:providing a comprehensive central
mutation database for molecular diagnostics and persona-
lized genomics. HumGenomics 2009;4:69–72.

16. Safran M, Dalah I, Alexander J, et al. GeneCards Version 3:
the human gene integrator. Database. Advanced access
published 5 August 2010; doi: 10.1093/database/baq020.

17. Aboobaker AA, Blaxter ML. Medical significance of
Caenorhabditis elegans. AnnMed 2000;32:23–30.

18. Chien S, Reiter L, Bier E, et al. Homophila: human disease
gene cognates in Drosophila. Nucleic Acids Res 2002;30:
149–51.

19. Quackenbush J, Cho J, Lee D, et al. The TIGR Gene
Indices: analysis of gene transcript sequences in highly
sampled eukaryotic species. Nucleic Acids Res 2001;29:
159–64.

20. O’Brien K, Westerlund I, Sonnhammer E. OrthoDisease: a
database of human disease orthologs. Hum Mutat 2004;24:
112–19.

21. Bedell MA, Jenkins NA, Copeland NG. Mouse models of
human disease. Part I: techniques and resources for genetic
analysis in mice. Genes Dev 1997;11:1–10.

22. Dalkilic M, Costello J, Clark W, et al. From protein-disease
associations to disease informatics. Front Biosci 2008;13:
3391–407.

23. Lopez-Bigas N, Ouzounis CA. Genome-wide identification
of genes likely to be involved in human genetic disease.
Nucleic Acids Res 2004;32:3108–14.

24. Gu Z, Steinmetz L, Gu X, et al. Role of duplicate genes in
genetic robustness against null mutations. Nature 2003;421:
63.

25. Conant G, Wagner A. Asymmetric sequence divergence of
duplicate genes. GenomeRes 2003;13:2052–8.

26. Liao B, Zhang J. Mouse duplicate genes are as essential as
singletons. Trends Genet 2007;23:378–381.

27. Forslund K, Sonnhammer EL. Benchmarking homology
detection procedures with low complexity filters.
Bioinformatics 2009;25:2500–2505.

28. Goh K-I, Cusick M, Valle D, et al. The human disease
network. Proc Natl Acad Sci USA 2007;104:8685–90.

29. Putnam NH, Butts T, Ferrier DEK, et al. The amphioxus
genome and the evolution of the chordate karyotype.
Nature 2008;453:1064–1071.

OrthoDisease - tracking disease gene orthologs 473
 at K

arolinska Institutet on S
eptem

ber 22, 2011
bib.oxfordjournals.org

D
ow

nloaded from
 

http://bib.oxfordjournals.org/

