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he questions:  

pression values contribute to the FC discovery, or only the 
highest (e.g. top 10%, 5%, or 1% of the range) ones shall be considered, be it in the 
master species or across the model organisms?  

The design “Optimal discretisation algorithm” (Supplementary Table 2 online) proved the 
superiority of the multi-bin discretisation over the binary one.  

2. When some conditions of micro-array experiments are more informative on FC than 
others, is it feasible to select an optimal set of conditions for discriminating between 
FC and non-FC gene pairs?  
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Methods 
Statistical tests of NBN configuration 
We analysed the framework configuration parameters such as “maximal n
discretization”, “way to use ortholog information”, “choice of a co-exp
for magnitude and significance under ANOVA general linear models (StatS
All accepted NBN modifications were significantly efficient (p0<0.01). The
were quantified in terms of AUC. For example, introducing likelihood
confidence augmented AUC by 12% in the specificity region 96-100% com
default configuration, i.e. “using any non-zero likelihoods”. The effects of 
their interactions are shown in Supplementary Figure 2. Complete balance
ANOVA de

holdout bootstraps. For each bootstrap
instance of the general population in t
for validation. 

 

1. Metrics of pairwise similarity  

1.1. mRNA co-expression 
 
Introduction 
Although mRNA expression data from microarrays are relatively noisy, 
high coverage as up to 100% of all protein pairs can be analysed. mRNA
have been used extensively for predicting functional associations between 
Bergmann et al., 2004; Fraser et al., 2004; Ti

To employ mRNA expression data in FunCoup, we tried to resolve the issu
We leaned on studying the bulk FunCoup results, when non-zero likelihood values of 
respective bins and better overall performance of FunCoup would answer t

1. Do low (moderate) ex
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This problem is discussed in details in the Data section of this article.  

entally high, thus 
99b) is 

discovery of FC or, on the contrary, such aberrations may deliver valuable biological 

ating outliers, 
n, 1999d). 

 yeast PPI data with 
correlation and PLC are 

ntially flawed in 
r information 

do include 
e correlation. Instead, we considered MI, PLC, 

and Spearman rank correlation (SRC; Weisstein, 1999e). These three could potentially tackle 
hole spectrum of possible problems. Indeed, while PLC is sensitive to outliers, using 

ome advantageous. 

 

gh when the 
I and PLC were 

e FC with co-
ree metrics in all 

o-expression metrics” 
ng more than one 
s species, FC 

 better (seldom significant) over SRC, 
both alone and together with MI. MI alone was usually significantly inferior to both PLC and 

iple, one could use the results to choose the best option. Although, we treated 
ulation of the 

tion is to 
d MI. The latter 
ich we set to 4 by 

All micro-array data was normalized. The absolute mRNA abundance values in Affymetrix 
sets were usually biased towards higher values, and applying PLC would be wrong. We 
rendered such data sets normal by dividing the values with the gene-specific means. Values in 
most of the published Affymetrix data sets are labeled as either “absent” (low confidence), 
“marginal”, or “present” (higher confidence). We did not exclude any of them for uniformity 
with dual-channel data. Higher noise content in low confidence values was thus treated 
uniformly with that in other data types.  
The values of dual-channel arrays are ratios of “normal” vs. “treated” conditions. Such values 
are usually normally distributed, and we did not change it. 
 

3. In some conditions, mRNA abundances of two genes can be coincid
producing an outlier. Pearson linear correlation (PLC; Weisstein, 19
notoriously sensitive to such aberrations. Does using PLC seriously compromise the 

information? 

Although a great deal of the micro array data analysis was dedicated to elimin
Hahn et al. (2005) found PLC better than mutual information (MI) (Weisstei
Kemmeren et al. (2002) tested the cosine correlation distance in verifying
co-expression and showed its minor superiority over PLC. The cosine 
alike, but the former does not refer to the distribution mean and is thus pote
the area of negative values. However, the mission of FunCoup was to transfe
over distant phyletic clades, with complex patterns of co-expression, which 
negative values. We thus rejected using cosin

the w
SRC may address the issue. If the outliers do witness FC, PLC would bec
On the other hand, MI reports non-linear dependencies.  

Results 
A preliminary study showed that, e.g., both MI and PLC can be spuriously hi
other metric is low. FC likelihood of these cases was lower than when both M
high.   

Thus, if any of the three metrics is compromised, or not sufficient to disclos
expression, then another one can compensate for the flaw. We tested the th
the 8 possible presence/absence combinations (design ”Optimal use of c
of Supplementary Table 2 online). The factorial ANOVA showed that usi
metric is optimal. Still, no particular combination was overall superior acros
definitions, and specificity regions. PLC was slightly

SRC. In princ
the 5 tested species and the 2 FC definitions as instances of the general pop
possible data sets (random factor effects in ANOVA). Thus, our recommenda
discover FC with PLC alone or, alternatively, with a combination of PLC an
has a potential for improvement, as one can change the number of bins - wh
default, splitting each range of expression values into quartiles.   

 
Data preparation 
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f homologous 
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oup, our tests did 
not include pairs of genes with a unidirectional BLAST similarity score above 100 bits. 

mpromised by confusing inparalog pairs. How 

t, the likelihood values 
the evolutionary 
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tes, experiments, 
en two independent 

 PPIs have been 
confirmed by 3 or more publications with in total >10 experiments. 
 
Having compiled data from IntAct, HPRD, GRID, BIND databases plus some published 
datasets not yet there, we accumulated 183983 distinct protein-protein interactions in human, 
38717 in D. melanogaster, 40732 in M. musculus, 183546 in R. norvegicus, 8887 in C. 
elegans, 173178 interactions in S. cerevisiae, and 3000 in A. thaliana. 38738 of these 
interactions were reported more than once. Moreover, one article might have reported 
validation of the same interaction in more than one assay/experiment. Normally, yeast-2-
hybrid and some other techniques employ a binary approach and discover PPI as asymmetric 

Co-expression metrics 
PLC and SRC were computed without modifications. Mutual information (
addressed more complex non-linear relations between the pairs of gene exp
Applying this metric needs profile values to be discretized (by classifying in
bins). As we knew that the distributions of particular expression values are o
zero, a version of adaptive partitioning (Steuer et al., 2004) was implemented
range of a gene expression profile was sorted and split into four equally s
this binning procedure was appl
metric values su
described in the Discretisation section).  
 
Cross-hybridization 
Different microarray chips can be prone to cross-hybridization: transcripts o
genes have an affinity to each other’s probes on the chip. Hence, a higher co
of two homologs might be an artifact. To avoid this factor in testing FunC

Otherwise, the results of FunCoup might be co
this possibility was ruled out is described in Using orthologs section. 
 

1.2. Protein-Protein Interactions (PPI) 

PPI-based evidence worked well across species and FC classes. In fac
were much stronger affected by the quality of training and test sets then by 
distance.  

The protein interactions are often reported in the binary form, i
een multiple attempts to differentiate them in respect of

ot et al., 2003; von Mering et al., 2005; Suthram et al., 2006). Many app
PI confidence post hoc, ma

l score assignment from multiple data sources in FunCoup). Others em
rmation: number of tested baits / preys, their relative outpu

etc. Meanwhile, times have changed and the analysis faced novel challen
 

1) it is feasible now to compile large multi-source datasets and eval
gold standard sets in several organisms;  

2) many PPIs have been reported more than once in peer-reviewed publications, and 
these independent confirmations became the major evidential factor. 

 
The modern release of IntAct database keeps track of multiple replica
methods, and publications that support a particular interaction. While ev
experimental reports on an interaction drastically raise its confidence, many
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 tested positive 
tions with each 
. We accounted 
n. To account 

ced a novel score. 
ut of the current 

ta source (October 
ns from HPRD, GRID, BIND, 

 were added 

The score was similar to the main formula of Bayesian probability of functional coupling (see 
Methods), nd combined the probabilistic scores S+ (for being coupled)  and S– (for not being 
coupled): 

interactions of a “bait” protein with a “prey” protein. A bait might be then
against multiple preys. Although the latter are not observed in direct interac
other, e.g. IntAct database presents them as members of the same interaction
for this information and included “prey-prey” interactions into our compilatio
for such cases as well as multiplicity of reports and experiments, we introdu
It favors support from different articles in PubMed. The details are parsed o
release of the IntAct database, stored in XML format PSI-MI 2.5. This da
2007) became the principal part of our compilation. Interactio
and the large list of yeast complex members reported by Krogan et al. (2006)
when they were traced to other PubMed publication IDs, or simply unique.  
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Thus, the score grew with the number of individual experiments (|Assays|) reported the 
interaction between proteins A and B (pairwise or in a group/complex). The total number of 

alized multi-member 
sitive results on the same 

e also wanted to 
e latter are even more 

e same article p was square-rooted.  
 

ence, the 

”, 0.1 
n is false” 0.001 

were assigned roughly, equaling, and, respectively.   

For example, two proteins reported to interact only in one paper, one assay, and without a 
er, received a score 0.091. If the assay had listed hundreds of interaction partners, 

t dataset is 
0.99999899. It was assigned when e.g. an interaction was tested in 10 assays reported in 2 
papers or in 6 assays each published in a separate paper.  After the discretisation, the range of 
score SPPI was split into several bins with distinct LLR ranging between 1.5 and 8.5. 
 

1.3. Phylogenetic profiling 
 
Introduction 
For phylogenetic profiles, we chose a strategy different from other datasets. Here, each gene 

partners |IPa| in the interaction involving simultaneously A and B pen
i ent ractions. On the other hand, an article might present po
interaction from multiple assays. While this was a useful feature, w
distinguish such reports from ones coming from different papers, as th
reliable. Hence, the number of assays in th

The score was not intended to deliver the exact probability of interaction. H
probabilities: 

• P(PPI), “an interaction exists between a pair of proteins”, 0.001 
• pc+, “a single positive report is published given the interaction is true
• pc– , “a single positive report is published given the interactio

 

third partn
the score fell down to 0.011. The highest score reached in the current IntAc
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signature. For instance, 
s that both have 

ies. Each 
arked this method 

tially 
round for this study 

d and evaluated in 
, 2002; Glazko 
k a 

rmance of PP in 
 was focussed on 

tic species with stable evolutionary relations and only a handful completely 
) reported a 

e our own approach 

 genomes. Co-occurrence 
re biological 

ing than in a number of closer relatives (e.g., in all mammal genomes). 

y orthologs that are most relevant in respect of conservation.   

 or asynchronous 

AST (e.g., 
 et al., 2003). Sun 
in prokaryotic 

thologs are 
me function than non-orthologous homologs. Neither a loose 

pproach (Snitkin et al., 2006) nor using KOGs (a eukaryotic version of 
y outparalogs - 
 orthologs. In 

 functionally conserved 
usters for all our PP 

en species X and Y, 

genetic distance 
were recently proposed and tested on microbial (Zheng et al., 2005) and eukaryotic genomes 
(Barker and Pagel, 2005). We still wanted a simplified, easy-to-compute metrics for 
FunCoup.  Marcotte et al. (1999) weighted conservation between genomes A and B with 
some “real number” reflecting the evolutionary distance. For our PhyloCoup metrics (which 
tested superior to other approaches except the other our method PhyloSign), we used the 
number of A genes in A-B InParanoid clusters. Thus for human gene pairs, having yeast 
orthologs to both proteins costs 3.35 more than having them in mouse. In fact, the ratio of the 
evolutionary distances Dhuman-mouse / Dhuman-yeast should be much larger than 3.35. But that 
nonlinearity was biologically justified: there is a minimal set of proteins that human and yeast 

pair was classified into a discrete category describing its phylogenetic 
the signature “mammals_insects_fungi” may characterise human gene
InParanoid orthologs in mouse and/or rat, fly, and yeast, but not in other spec
signature is treated as a discrete evidence ‘bins’ during training. We benchm
against a number of earlier proposed metrics, as well as against several novel poten
useful metrics, and found it superior (Supplementary Fig. 6). The backg
is given below. 
A number of metrics for phylogenetic profiling (PP) have been propose
respect of FC discovery (Pellegrini et al., 1999; Marcotte, 2000; Zheng et al.
and Mushegian, 2004; Date and Marcotte, 2005). Sun et al. (2005) undertoo
comprehensive study of the effect of evolutionary distance on the perfo
Prokaryota, while orthology relationships were ignored. However, FunCoup
eukaryo
sequenced genomes (unlike of hundreds in Prokaryota). Snitkin et al. (2006
failure to employ PP in Eukaryota.  We attempted to develop and evaluat
that would: 

1. Account for inequality of evolutionary distance between the
of two genes in very distant genomes (say, human and worm) has mo
mean

2. Consider onl

3. Focus on simultaneous presence of two genes rather than co-absence
patterns. 

 
Which homologs to use? 
The common approaches are to build PP from all homologs found with BL
Marcotte et al., 2000) or to use clusters of orthologs such as COG (e.g., Wu
et al. (2005) minutely evaluated using BLAST E-values between homologs 
profiles and recommended optimal cutoffs. However, it is well known that or
much more likely to have the sa
homology-based a
COG clusters by Tatusov et al., 2003; we have shown that they contain man
Alexeyenko et al., 2006a) can reliably discriminate between outparalogs and
contrast, a gene clustered by InParanoid (Remm et al., 2001) is most
in the other species (Hulsen et al., 2006). We thus used the InParanoid cl
metrics. If a gene GX of genome X belonged to an InParanoid cluster betwe
it was counted as present in Y in the PP. 
 
Evolutionary distance 
Complicated tree-based methods of weighting co-occurrence data with phylo
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shall share to remain living eukaryotes.  

re likely is their 
ilarity. 

ta similarity metrics 
hyletic profiles. 

e. We noticed that 
al information (MI) and the modifications of 

y distance and 

co-occurrence of 
ondence with 
 was not 

, our PhyloCoup metrics were 
r matches of two 
he probability of a 
s estimated from 

usly suggested 
itively defined Jaccard 

mong the most 
re given below). 

 13 tested on four 
 “PhyloCoup, match only” metric. Despite the inferiority of 

 their good 
 prokaryotes, with 

d with horizontal 
oup on a very 

t of genomes with unequal evolutionary distances, and this could be the reason for 

lt across 7-8 eukaryotic 
genomes: the series of {human, mouse, fly, worm, yeast, A.thaliana} plus 1-2 evolutionary 
close s  Schizosaccharomyces 

 and Candida albicans for yeast, Caenorhabditis briggsae for worm, Oryza sativa for 
opsis).  

Testing on KEGG-derived metabolic or signaling links would not be fair, as the KEGG 
nriched in genes with easily reconstructed phylogeny and thus had 

advantageous profiles. Therefore, we tested the metrics on PPI gold standard sets. 
 

 
Numeric metrics of pattern similarity  
The more synchronous phylogenetic profiles are across the genomes, the mo
functional coupling. The problem was to find the optimal measure of profile sim
Glazko and Mushegian (2004) presented a critical review of the binary da
– from Pearson correlation to information theoretic tools – applied to the p
Many of them were demonstrated irrelevant with a characteristic test cas
even the best evaluated metrics, such as mutu
Pearson correlation coefficient (PLC) ignored the inequality of evolutionar
under-estimated asynchronous occurrence of two genes.  
 
Wu et al. (2003) introduced a probabilistic formula to estimate systematic 
genes across clades. This pure combinatorial estimate showed a good corresp
functional coupling, but is not designed for use in a Bayesian framework and
necessarily relevant to specific FC classes. For comparison
designed in a somewhat relative but simplified manner. They accounted fo
gene profiles and weighted each with the probability to have an ortholog. T
gene of species A to have an ortholog in another species G (P(A→O(G)) wa
the percentage of A genes found in InParanoid clusters between A and G. 

Applying the Bayesian training in FunCoup, we re-tested a number of previo
metrics, often modified to a certain degree. The list included the pos
distance (Teknomo, 2005) which Glazko and Mushegian (2004) mentioned a
sensitive metrics. Our original metrics were tested as well (full descriptions a

One of our metrics, “PhyloCoup, inverse weighting”, was the best out of the
species. The second best was the
MI and Pearson-like coefficients in this comparison, other works showed
performance. Probably, the disagreement is due to specificity of analysis in
hundreds genomes available and the evolutionary relationships often obscure
gene transfer. Our task seemed much harder in this respect: we tested FunC
compact se
the efficacy of the weighting procedures. 
 
For each master species’ genes, the phylogenetic profiles were bui

pecies (Rattus norvegicus for human, Anopheles gambiae for fly,
pombe
Arabid
 

pathways were e

)(GOa →  denotes an event when a particular gene a has an ortholog in the genome G; 
¬ : NOT; 
∨ : OR; 
∧ : AND.  
The names used in Supplementary Fig. 6 for each metric  are given in italics below. 
 
Mutual information 
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The common formula of mutual information is (Weisstein, 1999d): 
 

∑∑ ==
===
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where x and y are the states of genes a and a , respectively, i.e. denote absence/presence of 
orthologs in the genome

i j
 G: 

)}();({ GOaGOay jj →→¬=    (M
)}();({ GOaGOax ii →→¬=
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:  Usually the numerators for the probability expressions of (MI-1)

GN
xP )(  , 

xn )(
=

GN
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are simply counts of presence/absence of orthologs to a , a across the geno

yxP ),) n(
I-3) 

i j mes: 
||)( xxn = , ||)( yyn = , and ||),( yxyxn ∧=    (MI-4). 

Reasoning that, say, m rthologs have different meaning for human 
phylogeny, we modified (MI-1) by weighting (Guiasu, 1977) the terms (MI-3) with fraction 
of species’ genes that have orthologs in model organism G:  

ouse and worm o

∑ →−=
GN

G

GOAPxn ))((1()( , (MI-5) 

∑ →−=
GN

yn(
G

GOAP ))((1() ,            (MI-6) 

∑ →−=
GN

G

GOAPyxn ))((1(),( ,          (MI-7) 

where G is a genome with the respective combination of presence/absence of orthologs to ai 

olog in mouse was 0.356, whereas a gene 
with an ortholog in worm gave 0.609. The difference is less than it seems from the 

thology relationships 

 
Jaccard distance 
Simple matching coefficient (Teknomo, 2005) is the fraction of matches (when orthologs to 

and aj. 
 
Thus, the input from a human gene having an orth

evolutionary point of view, but it does reflect the probabilistic or
between the genomes.  

both genes are either present or absent) in the phyletic profile: 

N
GOaGOaGOaGOa

S jiji |)()(||)()(| →¬∧→¬+→∧→
=   (J-1), 

where N is the complete number of matches plus mismatches: 

|))()((|
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GOaGOaGOaGOa
N

ji

ji
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→∧→
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+→∧→¬∨→¬∧→
=

   (J-2). 

Jaccard’s coefficient is the simple matching coefficient without co-absence cases (which we 
believe are less relevant to FC conservation):  

|))()(())()((||)()(|
|))()((|

GOaGOaGOaGOaGOaGOa
GOaGOa

JC
jijiji

ji

→∧→¬∨→¬∧→+→∧→
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=
 (J-3). 
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The numerator of Jaccard’s distance counts mismatches instead of matches:  

|))()(())()((||)()(| aGOaGOaGOaGOaGOa
JD

jijiji →∧→¬∨→¬∧→+→∧→
=

A modified version of Jaccar

|))G()(())()((|
GO

OaGOaGOaGOa jiji →∧→¬∨→¬∧→
 (J-4). 

d’s distance had the mismatch count only in the numerator, and 
we took a log of it for convenience: 
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ji →∧→

|))()(())()((| GOaGOaGOaGOa jiji →∧ ∨→¬ ¬ → ∧→

 numerator or the denominator of the log ratio equalled zero, it was replaced 

 
Hamming distance 

−=  (J-5); 

 
When either the
with a small constant. 

counts mismatches (when G has an ortholog to one of the genes, and not to the other): 
|))()(())()((| GOaGOaGOaGOaH i →jij ∧→¬∨→¬∧→= . 

 
PhyloCoup metrics 

enalized 
mismatches: 
A weighted version of the Hamming distance (PhyloCoup, mismatch only) p
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G
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For a comparison, an inverted version of the latter (with reversed treating of similar vs. distant 
genomes) was tested (PhyloCoup, inverse weighting): 

∑
⎪
⎪
⎩

⎪⎪
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Discrete metric  

)

 

Eventually, we reasoned that because the number of different co-presence profiles is small, 
they can be expressed as distinct phylogenetic signatures. For example, {mammal, fly, 
worm} denotes presence of both genes in mammals, D. melanogaster, and C. elegans. Then 
likelihoods could be assigned to such individual strings. This approach removed any chance 
of a score peculiarity – which is still possible even after a careful design. However, the total 
number of distinct signatures should not be too large – this would lead to insufficient number 
of observations of each category in the training procedure. For this reason, the situations 
“both absent” and “one present, one absent” were collapsed together, and the number of 
species was reduced to that of major clades (Fungi, Plantae, Animalia) plus closer relatives.  
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entary Fig. 6 
an F human, 

plant} in human FC-CM).  

Co-localization is a binary (two proteins are either present together or not) feature. However, 

partment and  

ins (cytoplasm, 
me) should differ in importance. Using a mutual 

ed by applying 
I terms: the more proteins in the compartment, the less 

meaning have co-occurrence of two proteins in it.     

ormula adapted for 

The discrete PhyloSign values proved to be more discriminative (Supplem
online). The LLR ranged from –2 ({human, worm} in hum C-PI) to +3.5 ({
mouse, rat, fly, worm, yeast, 

1.4. Sub-cellular co-localization 

we wanted to account for: 

1) occurrence of a protein in more than one com

2) sizes of the compartments’ sub-proteomes.  

Indeed, co-localization in a big compartment which thousands of prote
nucleus) and in a small organelle (polyso
information (MI) score addressed the first issue. The second was tackl
weights (Guiasu, 1977) to the M

The common formula for MI was modified in a way similar to the MI f
measuring phylogenetic profiles’ similarity: 

∑ ∑
= = ==

= =
===

0,1}{a {0,1}b )()(
),(log),(
bjPaiP

bjaiPbjaiPWMISLC  

where a, b are the “presence/absence” indicators of proteins i and j in locations L. The 
absence/presence observations in each sub-cellular location l were counted as complement to 
the relative s e of l: iz

Ll Nnlc /1)( −= . 
Therefore  

N

LN
l

lc
aiP

L

∑
=== 1

)(
)( , 

rganism. Identically 
 l, the more 

atasets 
GLI1, GLI2, GLI3, 
ikas et al., 2006); 
06); 

• RegulogDB database of yeast TF binding sites conserved in C. albicans, worm, fly, A. 
thaliana – plus the respective pairs of orthologs (regulogs) in the 3 latter species (Yu 
et al., 2004). 

A “TF -> target” pair is a link between two genes and can be considered as input for 
FunCoup per se. However, such links would not overlap with the training sets used in 
FunCoup (FC-ML, FC-PI, FC-CM), and only rarely would with FC-SL. Hence, a confident 
LLR could not be derived in the training procedure. We thus provide such couplings as 
additional information. On the other hand, the FC between genes – targets of the same (sets 
of) TFs can be tested with any of our training sets. The score for overlap was calculated as: 

where NL is the total number of protein localizations mentioned for the o
to the phylogenetic mutual information score, the fewer proteins assigned to

ormative the co-localization. inf

 

1.5. Protein-DNA binding 
As a source of protein-DNA interactions, we collected data from 3 major d

• Genome-wide predicted binding sites of transcription factors (TF) 
TCF-4 conserved between human and one or more vertebrate (Hall

• MPromDB database of mammalian TF binding sites (Sun et al., 20
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|}{}{| ji
ctgtTF BSBS +−

i.e. the shared fraction of the binding site sets {BS} betwe

|}{}{| 2
jiBS

S
∩

= , 

en genes i and j was multiplied by 
ntically to the SmiRNA_ctgt score). 

l, 2007) served 
ng sites of known 

pecies 
ly) to 624 (human) 

distinct miRNAs, with species-average number of binding sites per gene from 3.5 (worm) to 
y false or 

 

For each pair of genes and j with sets of predicted miRNA target sites having the 
l coupling score 

BS

the cardinality of the shared subset. (ide

1.6. miRNA-gene targeting 
miRBase targets database version 5 (November 2007) (Griffiths-Jones et a
input for this data type in FunCoup. The database contained predicted bindi
miRNA positionally conserved in 2 or more animals. The majority of genes in each s
(human, mouse, rat, fly, worm) was predicted as a target to between 90 (f

40 (human). Most of these predictions were obviously either computationall
biologically irrelevant. We thus tried to retrieve meaningful evidences from the sets.
 

 i 
complementarity score > 15 (about 80% of the database content), a functiona
for overlap was calculated as: 

|}{}{| ji BSBS
i.e. the shared fraction of the binding site sets {BS} between genes i and 
of the shared subset (identically to the STF_ctgt score).  

1.7. Protein co-expression 

|}{}{| BSBS ∩

j times the cardinality 

The Human Protein Atlas (Hober and Uhlen, 2008) provided data on staining 1400 cell line 
n proteins. Each sample had been 

analyzed for dye intensity of the staining antibo y and received a grade (“white”: negative, 
“yellow”: weak, “orange”: moderate, and “red”: strong). The protein co-expression score in 

. We tested a 

The common formula for mutual information (Weisstein, 1999e) is: 

2
ji

ctgtmiRNAS
+

=− , 

and tissue samples with antibodies to about 3000 huma
d

FunCoup had thus to deal with quantitatively ordered coarse-resolution data
number of opportunities and found an optimal score. 
  

∑ ∑
= = ==

==
===

r}y,o,w,{a {w,b

),(log),( bjaiPbjaiPWMIPEX  
r}y,o, )()( bjPaiP

where a,  b are the color indicators of the staining of genes i and j. To account for the 
respective color abundance in each le, the sample-specific weighting coefficients rather 
then unities were summated along the staining profiles.  A weight coefficient was the fraction 

le s

 samp

of color grade a (one of {“w”, “y”, “o”, “r”}) in samp : 
sas Nnasw /),( ,= ,  

where Ns is the total number of successfully stained genes in sample s, i.e. the sum of all “w”, 
“y”, “o”, and “r”’s. Hence,  

ji

N

s

N

asw
aiP

ji

∩

=
∑

∩

== 1
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ji
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s
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ji

∩

=
∑

∩
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)( , and 
ji

N

s

N

bswasw
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∩
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∩

⋅
=== 1
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),(  

rather than actual probabilities of i=a etc. in the common formula. is the number of 
cell/tissue samples which both i and j stained successfully. 
 
The “cell line” and “tissue” subsets of HPA were processed as separate datasets and yielded 

jiN ∩
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distinct likelihood values. 

) discovery. A 
etween genomes: 

n and Jurisica, 2005), all homologs above a threshold (Wojcik and 
). von Mering et 

 et al., 1997): the 
ologous group equally contribute to the prediction. 

stant homologs 

tional divergence in paralogs (and 
e proposed weighting system 

paralogs, which 
Koonin, 2002), in the clusters..  

ns: 

n distributed among 
 

ween the orthologs 

ation on functional 

more relevant. 
 the speciation are automatically ignored, which sets a natural, 

evolutionary and thus functionally relevant cutoff.  

For technical reasons, InParanoid classifies orthologs into two groups: seed orthologs 
(reciprocally best hits) an to 
any g inks classified by 
four types (looking from the master species of interest): “Seed-to-seed”, “Seed-to-additional”, 
“Addition dditional-to-addition below). Option 1 corresponds 
to the reciprocally best hit approach. 

 

 
 Type of ortholog links with examples from Fig. IllAlternativesInLinkTransfer 

 

2. Using orthologs for inferring functional coupling 

Information from model organisms is very useful in functional coupling (FC
number of approaches have been tried to transfer pairwise functional links b
best reciprocal hits (Brow
Schächter, 2001), InParanoid clusters of orthologs (Lehner and Fraser, 2004
al. (2005) tested two methods:  

1. Pooling evidences across whole COG clusters of orthologs (Tatusov
members of an orth

2. Weighting high scoring homologs by the sequence similarity: more di
less affect the prediction.  

While the latter approach agrees with the theory of func
showed the best results in the test by von Mering et al., 2005), th
is an ad hoc one and uses arbitrary (“expert”) estimates of sequence-function divergence 
ratios. Moreover, the algorithm of finding orthologs frequently includes out-
are not orthologs (Sonnhammer and 

To implement using orthologs in FunCoup, we addressed following questio

A. In case of alternative ortholog pairs, how is the useful informatio
them?

B. What kinds of genomic information (if not all) one can transfer bet
to predict functional coupling? 

C. What grouping of orthologs is optimal for transferring inform
coupling? 

 We used InParanoid as the source of orthologs (Remm et al., 2001) seemed 
Homologs originating before

and additional inparalogs (that are closer to the seed orthologs th
ene fr  genome). Thus, it was possible to test ortholog lom the other

al-to-seed”, “A al” (see the Table 

 target species source species 
1. Seed ortholog(s)  Seed ortholog(s) 
2. Seed ortholog(s) Additional inparalogs 
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3. Additional aralogs  ortholog(s) inp Seed
4. Additional inparalogs Additional inparalogs 

FunCoup can assign specific likelihood values to the data sources and func
based on their relevance to FC. It is possible to calculate likelihoods in 

tional classes 
respect of these four 

link types, too. The comparison clearly showed that the likelihood values of FC differed 
arately.  

s of using ortholog data. For each 
evidence feature, the FunCoup framework produced one of: 

-to-seed” links.  

es separately. 

e ANOVA 
  

rmation from 
rnative ortholog pairs. Two ways seemed reasonable: choosing either the best or 

e “best”: e.g. the 
or a metric that 
ctor “Estimating 
Supplementary 

 online). 

 (Supplementary 
r better or equal to 

eed-to-seed” and “All separated” options in every combination of “Estimating 
d species and the 

inparalog pairs” in all 
ain factors rather 

inparalog pairs is 

dence. Micro-array 
signed for. This 

users (e.g., Sartor 
 differently 

vulnerable to this potential drawback. Sometimes there is no correlation between expression 
patterns of two genes with very high BLAST score and percent identity. In other cases, they 
do correlate. In the latter case, it can be not an artifact but rather an effect of a promoter 
mechanism shared by the recent duplicates, or another kind of a biologically meaningful co-
regulation. However, it seemed impossible to distinguish between such cases and unspecific 
hybridization. It was easy to filter out such cross-hybridization in the protein pairs used for 
training and testing: homologous pairs were completely excluded (see Methods). But the 
expression profiles may well be confused between inparalogs of a model organism. Say, gene 
A can have an expression profile similar to that of B. But the differential expression of B in 

between the four types. Hence, it seemed prospective to employ them sep

Thus, we designed an experiment to compare three way

1. A column with data available only via “seed

2. A column with data pooled for all possible pairs between the respective InParanoid 
cluster members (sum of lines 1-4 in the above Table).  

3. Four separate data columns, each estimated for one of the four link typ

The respective levels of factor “Mode of using orthologs” were included in th
design “Optimal FunCoup configuration” (Supplementary Table 2 online).

Using clusters of inparalogs poses another question: how to combine the info
multiple alte
the mean value of the available values (with metrics-specific definitions of th
maximum absolute value of PLC, the maximum for MI, or minimum values f
counts phylogenetic mismatches).  We tested the two ways as levels of the fa
alternative inparalog pairs” in the design “Optimal FunCoup configuration” (
Table 2

Analysis of the factorial ANOVA design “Optimal FunCoup configuration”
Table 2 online) clearly showed that using the option “All pooled” was eithe
both “S
alternative inparalog pairs” and “Likelihood confidence check” over the teste
classes of FC. This held at all the ranges of specificity.  

The same was true about the option “Best” of “Estimating alternative 
the respective combinations (Supplementary Table 2 online shows only m
than combinations). We concluded that picking up the best values from all 
optimal.   

There was still one more problem about using multiple ortholog data as evi
probes can bind transcripts similar but not identical to those they were de
problem (cross-hybridization) has been addressed by the chip designers and 
et al., 2006). Nowadays, different technologies, chips, and experiments are
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s-hybridized to the 
 species Y are 

g pairs. As a consequence, 
data. 

oup configuration”, 
 in the investigation. 

en using only 
when all but 

 option should be more advantageous than on the mix of data. The tested null-

is would be 

ly expression” and 
. Thus, both the 

e cross-
nlikely, as it would 
ed with Y2H, co-

rinciple, PPI is shown 
 et al., 2002). But 

ong the pairs of 
ics is sufficiently 

rmation flow via 
ization, and 
ny particular data 
hem. 

 of weighting 
 A major 

ethod and STRING – which evaluates evidence datasets against the 
ard in the same species – is that we employ Bayesian estimation against a gold 

ecies for which the predictions are made. Moreover, the exact reproduction 
nchmark scores for each our dataset was impossible: the FunCoup scores 

ndeed, they are produced by comparing positive training sets vs. 
 orthologs / additional 

 further weighting 

3.1. Summary 
The discretization algorithm that we developed for FunCoup is similar to the one by 
Butterworth et al. (2004), but because it is based on the Pearson χ2-statistic rather than the 
conditional entropy it does not require setting a parameter (power index = 1.8…2.2) as an 
additional step. With a χ2-score it tests all prospective cutpoints, i.e. ones where  
1) sample counts are sufficient,  
2) χ2 values are significant (p0<0.001), and  
3) the class label swaps between the positive and background FC.  

some or all conditions was in fact induced by homologous transcripts cros
B probes. Then all the six gene pairs between the two clusters of orthologs in
compromised, and we observe a value averaged across the inparalo
the “Best” and “Mean” approaches should be equally efficient on expression 

We did show superiority of the “Best” option in the design “Optimal FunC
but only on a mix of evidences. Hence, a contrast experiment might help
If there were a significant cross-hybridization in pure expression data sets, th
mRNA expression data should diminish the effect of the “Best”. In contrast, 
expression evidence is used (PPI, sub-cellular co-localization, and phylogenetic profiling), the 
“Best”
hypothesis was that both sets respond to the switch from “Best” to “Mean” option identically. 
If one of the two sets is more prone to confusion of inparalogs, the hypothes
rejected.  

The experiment did not expose any significant difference between the “on
“non-expression” variants (not shown): the null-hypothesis was not rejected
expression and the non-expression evidences are either equally affected by th
hybridization or not affected significantly. The former possibility seems u
mean systematic confusion of paralogous genes in the data sources obtain
precipitiation, co-citation, and sub-cellular localization techniques. In p
to be more likely when interacting paralogs are known to both genes (Deane
it was also demonstrated that interacting pairs can be discerned am
inparalogous proteins (Baudot et al., 2004), and thus the modern proteom
homolog-specific. We thus could rule out the possibility that the info
InParanoid clusters was significantly corrupted by micro-array cross-hybrid
considered the results inparalog-specific. However, we did not assess here a
sources and genes, and the cross-hybridization still might occur in some of t

It would have been also of interest to compare the above mentioned method
homologs implemented in the STRING database (von Mering et al., 2005).
difference between our m
gold stand
standard in the sp
of the STRING be
are of a different nature. I
random protein pairs. As the former have very different ratios of seed
inparalogs (up to 6 times, when comparing KEGG links to random pairs),
would strongly bias the result.  

 
3. Discretisation 
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rther partitions are 
 method against the 

ly superior 
 introduced a 

on FC, fewer bins 
ls cannot be separated 

signficantly, and that the dataset is not useful. The advantage of this procedure is that it is 
d the position of local optima.  

an,1995; Friedman 
se are highly 
s a function to 

ut the joint 
e in a continuous 

an and Geiger, 
man et al. (2000) 

s were then 
. Following this 

en binary) form. 
 such an 
 is split in two 

 FC. The ones below 
ptimal border 

value to be used 
), others 

n run counter to 

formation was 
ence than PLC = 

) had shown that the 
of FC is not linear. 

tive correlation of 
 of FC in two proteins.  

o fit dependencies 
eveloped a detailed 

fit the joint 
ces of FC 
re produced in 
 equations of 

non-linear regression served FC likelihood values to be summed up into final Bayesian 
scores.  

However, we could not adopt a regression approach in FunCoup for a number of reasons. 
Firstly, such fine-grained structure of empirical distributions is computationally hard when 
processing several eukaryotic genomes. Secondly, a “co-expression-to-likelihood” application 
still implies a kind of discretisation: single estimates of the likelihood are made on small co-
expression intervals (Lee et al. have used intervals 0.01 long; thus range of PLC [-1...1] splits 
into 200 bins). With data points not equally spread, or missing values prevailing, or a training 

The maximally scored point splits the metric range in two initial bins. Fu
iteratively sought while any prospective points remain. We tested the
default quantile-based partitioning and found the novel method significant
(Supplementary Fig. 2). The algorithm usually stops at 5-10 bins, and we
practically justified limit of 10 bins. When data deliver little information 
are created. No splits means that positive and background labe

insensitive to a metric’s distribution shape an
 

3.2. Background and reasoning 

Bayesian networks were traditionally built from discrete events (Heckerm
et al., 1997). Generally, they might accept continuous variables (while the
desirable in the discriminant analysis): each parent node of the BN assume
transform input events into the probabilities of the child nodes’ states. B
probability density over the nodes in the whole network is hard to estimat
manner. Semi-parametric density models were proposed (e.g., by Heckerm
1995) but proved to be very sensitive to chosen parameters. Instead, Fried
introduced a discretisation of the gene co-expression values. The probabilitie
estimated for a number of intervals over the range of the continuous value
approach, many genomics applications presented data in a multinomial (oft
The binarisation of continuous data (e.g. Xia et al., 2004) had drawbacks. In
approach, the continuous value range (e.g., PLC of gene expression profiles)
parts. Those above a chosen cut-off usually served a positive evidence of
were either ignored or treated as negative evidences. The task is to find the o
between the two regions. Some authors accepted a once established cut-off 
throughout the framework (Brown and Jurisica., 2005, Gunsalus et al., 2005
customized them in respect of dataset and species. In any case, the binarizatio
the progress of the micro-array technology: while expression measurement increases in 
quality and precision, the data integration renders it binary. The waste of in
obvious. It was intuitively clear that, say, a PLC = 0.8 may be a stronger evid
0.4. Even lower values should not be discarded. von Mering et al. (2003
dependency between raw value of an evidence feature and the probability 
Our experience showed that sometimes it is not monotonic either. A nega
expression (at least, in some remote orthologs) can well be an evidence

Naïve BNs do not need joint probability over nodes, hence it is possible t
between continuous variables with regression curves. Imoto et al. (2002) d
method of using non-linear regression in building BNs of genes as nodes (to 
expression distributions of gene pairs). Lee et al. (2004) fitted the dependen
likelihoods on co-expression (PLC) values. Very detailed series of points we
“co-expression vs. agreement with known FC pairs” space, and the resulting
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ered only the 
 often [0.6...1.0]), 

ues acquire 
ur problem should 

 fitting algorithm 
niversal and trustworthy to let it work without human supervision with any 

ated solution 

s of continuity, yet 
Bayesian likelihoods 

5). Drawid and 

 finding bin 
C was mentioned by 

Jiang and Keating (2005) and Myers et al. (2005) but no technical details were provided. 
ders. However 
an loose the 

Note that declaring a variable multinomial assumes no preliminary ordering of the particular 
bins can receive a 
.g. for PLC and one 

ola-shaped likelihood 

de; each part 
 be capable of 

s possible. But 
nd make most of 

the same likelihood, 
and keeping them separated means lost of robustness, and no gain in the prediction ability. A 
flexible (adaptive) partitioning would be highly desirable to place bin borders only at some 
“optimal” points. Although it is intuitively clear that the binning should be aware of FC, 
Fayyad (1991) showed that the discretisation is most efficient when the bin borders coincide 
with the functional differences – at the contrast points between FC-rich and FC-poor regions. 

ple example in the Table below shows how the class labels and the feature values may 
pt l c s s ld  m  b e oints 3-4 and 8-9. 

 

 

 

Case 
no. 1 2 3 4 5 6 7 8 9 10 11 12 

set small, the regression line might get unreliable. Lee et al. (2004) consid
monotonic S-shaped part of the PLC-FC distribution (at best [0.3…1.0],
having ignored the negative values. However, the negative co-expression val
positive likelihoods (chiefly as evidences from model organisms). Hence, o
be considered as specific to multiple species applications. And finally, any
did not seem u
kind of data, size of dataset, and curve shape – thus not applicable in an autom
such as FunCoup.  

We thus aimed for a compact and universal solution at the cost of some los
keeping compatible with the Bayesian technique. In general, learning 
from data using multinomial features has been well studied (Heckerman, 199
Gerstein (2000) divided the single mRNA’s abundance profiles into multiple bins (which is 
synonymous to discretisation), but did not mention a special procedure for
borders. Splitting the co-expression range into multiple bins to discover F

Myers and Troyanskaya (2007) employed integer Z-scores to define bin bor
with the expansion of the framework, an arbitrary setting of the bin borders c
relevance and escape the curator’s notice.  

values (bins). Thus, both leftmost and rightmost (and even intermediate) 
higher likelihood value. In our experience, this was sometimes the case, e
of the tested phylogenetic profiling metrics, which had parab
distributions with lowest or highest values in the middle. 

Thus, no prior assumption about positive and negative regions should be ma
should be estimated objectively. The framework should keep flexibility and
accepting novel features/metrics without manual fine-tuning.  

In principle, maximal precision should be achieved with as many partitions a
the number of observations per bin would then drop below a critical level, a
the likelihoods unreliable. Also, many neighbor bins would have almost 

A sim
be co-distributed. Probably, the o ima ut hou  be ade etw en p

FC + – + – – – – – + + – + 
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PLC -0.7 -0.6 -0.5 -0.1 0.0 0.0 0.1 0.2 0.3 0.5 0.6 0.8 

A brief illustration to the problem of discretising continuous features with re
second row indicates if the protein pair is functionally

gard to FC. The 
 coupled. The third row: Pearson linear 

iven in Steuer et 
at is aware of 

n conditional 
nfortunately, a 

β = {1.5, 1.8, 2.0}; we 
tion depends on 

s the once optimized 
ethod in the 

 described below: optimizing β was beyond our computational capacity, and β 
e the comparison unfair. Other drawbacks of this method 
etimes too close to each other and the new cutpoints are 

a significantly non-

2-test. It is not 
. We stabilized the 

ints if the difference 
tterworth et al. 
the series of 

nstead of 11) 
ained quite high 

e (~2000 potential cutpoints; this part of the procedure takes 
 was in testing 

ticularly 
n points.  

lass” pair: 
andom training 

, or “not known”) are 

ts are marked up. These are defined as points were the class label 
series interrupts (series of one or more “–” switches to “+”, or vice versa).  

tial cutpoint is tested. If condition A (below) holds, the ratios of class 
labels to the left and to the right from the cutpoint (n+Left/n-Left vs. n+Rightt/n-Right) are 
compared with χ2 metric. For the cutpoint with a maximal χ2 value, a better position is 
sought in its neighborhood (±n/2 potential cutpoints). Thus, the first two partitions are 
split at the point of the maximal difference between the ratios n+/n-. A cutpoint is 
accepted only if conditions B and C hold. 

4) The procedure is repeated for each new partition iteratively, until the limit of condition 
C is achieved.  

 
Conditions of the algorithm:  

correlation coefficient of the protein pair.   

A review of adaptive partitioning applied to MI of gene pairs expression is g
al. (2004). Butterworth et al. (2004) considered the problem of partitioning th
class labels. They suggested a new method of adaptive discretisation based o
entropy (the entropy contained in the feature bins on condition of the class). U
parameter β needs to be adjusted empirically (Butterworth et al. tested 
often found the optimum for our data at β = 2.2). Thus, the quality of a solu
the value of β which is learned only after the whole procedure. This make
framework sensitive to future changes. We did not include Butterworth’s m
regular study
left under-optimized would mak
were that the cutpoints were som
accepted only when an entropy gain is achieved (which is not identical to 
zero likelihood).  

3.3. Implementation 

We developed a discretisation algorithm based on the well-known Pearson χ
aware of entropy before and after the split, and uses very simple limitations
solution by fixing the maximum number of bins, and accepted the cutpo
between the partitions had p0< 0.001 by the χ2-test. Fayyad (1991) and Bu
(2004) have shown that the optimal split is always found at a point where 
identical class labels interrupts (points 1-2, 2-3, 3-4, 5-6, 6-7, 8-9, 10-11, 11-12 in the Table). 
Narrowing down the scope of the search to only such cases (here 8 points i
reduced the amount of computations (practically, up to 10-fold). Still, it rem
in big datasets, as in our cas
several times longer than all the others together). Thus, another modification

ially every n-th potential (n = 50) cutpoint. Falling into local miinit nima is not par
dangerous here, as the feature surface is gently sloping and has few inflexio

The χ2-based algorithm was implemented as follows for each “feature - FC c
1) The whole series of the feature values is sorted (the positive and the r

sets merged). Functional class labels (“+”: positive; “–”: random
retained at each value.  

2) All potential cutpoin

3) Each n-th poten
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 potential partition >9. 

it (10). 

Formula of χ2 –test (modified version of Weisstein, 1999a): 

A. Number of points of each class in each
B.  χ2 score > 10.83 (p0 = 0.001; 1 degree of freedom) 
C. No. of already accepted partitions does not exceed the lim
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ively. 

m set ones have Pearson correlation coefficient rc 
st, because the neighbor values rc = 0.68, rc = 0.71 produce lower 
nce, rc = 0.7 is chosen as a cutpoint. The regions rc < 0.7 and rc > 0.7 

d found it overall 
region of 

[99…100]% specificity was studied, with the region [96…100]% taken for comparison.  

h of the species 
ld be above 10.83 

0 ay be less than the limit when the conditions A or B 

ence check 

ul. We compared 

sed for prediction  

rence of each bin in the positive training set vs. that 
dant data, such as mRNA 
 two counts, matched to the 

sizes of the respective sets, produced a χ2–score. We only accepted bins that had >9 non-
empty protein pairs in each set, and yielded χ2–score > 10.83 (p0<0.001). Otherwise, the 
likelihood for the bin was set to zero. In the worst case (all bins zeroed), the whole dataset is 
excluded. 
Insignificant bins did deteriorate the FunCoup performance (effect of “Likelihood confidence 
check” in the ANOVA design “Optimal FunCoup configuration”, Supplementary Fig. 3 
online), and we set the significant test the default.     

4. Prediction of multiple classes of functional coupling  

For example, 25% of the positive set pairs and 3% of the rando
> 0.7. This is a point of the strongest contra
ratios: 26% vs. 3.5%, 23% vs. 2.9% etc. He
are attempted to be split into more bins.  
The procedure stops when the maximal number of bins is found.  

3.4. Results and conclusion 

We tested the χ2-based algorithm versus the simple equal bin partitioning an
superior (Supplementary Fig. 2 online). The most important for FunCoup 

Based on this assessment, and having considered also specific plots for eac
(not shown), we set the maximal number of bins to 10. The χ2-statistic shou
(p <0.001; 1 d.f.). The number of bins m
of the algorithm (Methods) hold. It usually happens to flatter distributions.   

3.5. Likelihood confid

Some likelihoods might receive very low likelihood values but still be usef
the FunCoup performance with two alternatives:  

1) when all learned likelihood values, irrespective of significance, are u

2) insignificant ones are coerced to zero.  

To test for significance, we counted occur
in a random set of sufficient size (200.000 protein pairs for abun
expression, and all possible proteome pairs for a PPI set). These
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t FC classes 
 al., 1997). Evidence nodes of such NBN have separate outputs to 

hown that FunCoup does assign different likelihoods of FC when trained in respect 
ecific training was 

A design 
h test, FunCoup 

. A half of the 
formed twice: first, 

lass. In the latter 
5…25% lower (which meant 15…30% lower specificity at the same 

level of sensitivity; i.e., FunCoup after specific training found more relevant links).  

 simultaneous training in respect of 

nal coupling, it can be 
mation transferred 

 this ability, we generated a network in  intestinalis, for 
which no large proteomics or genomics dataset was available. As a positive training set, we 

e seven 
pared it to the 
et of 226 

en 80 genes in the 

red 180 links in 

– as many as had 
gure 11) and the 

l” node 
enes connected to extremely 

 the validation. 
ence in the 

6). We then modelled 
the set of 54 RBP genes with randomly generated sets of the network genes taken in a 
sufficient number of samples to determine the mean and standard deviation. The expected 
mean number of links between 54 random genes was 39.5, thus the actually observed count 
180 ( p0<10–8) was a good result on this difficult test set. To discover by chance the 22 known 
links was also unlikely (modelled in a similar fashion: mean=14; p0=0.015).  
 
Furthermore, we assumed that, among the 158 other links, there were novel true ones – which 
remain to be validated in experimental research. Hence, the real p-value should be lower (e.g. 
it would be p0<10–6 already at 15 novel plus 22 known links) and the true discovery rate 

 
We suggested using specialized, separately trained predictors for differen
(multinets – Friedman et
class-specific predictor nodes.  

Tests had s
of different FC definitions (metabolic links vs. PPI). Moreover, using sp
more accurate.  

We tested the relevance of the multinet concept to FC problem in ANOV
“Differential FC type prediction” (Supplementary Table 2 online). In eac
was trained on two functional classes (PPI and metabolic) simultaneously
subset was used for the testing by cross-validation. Each test was per
FunCoup tried to find links of the relevant class, and second, of the other c
case, the AUC was 1

This feature became default, and FunCoup is capable of
several functional classes.  

 

5. Reconstructing the C. intestinalis interactome 
Because of FunCoup’s strong reliance on orthologs for inferring functio
used to reconstruct protein FC networks in one species using only infor
from others. To demonstrate Ciona

used pathway members inferred via orthology. The input data came from th
eukaryotes listed above. To validate the predicted Ciona network, we com
“regulatory blueprint for a chordate embryo” (Imai et al., 2006). This is a s
experimentally established functional links (mostly regulatory) betwe
ascidian embryo (“RBP” network).  
 
At a cutoff FBS=4 (in total, it yielded 306650 Ciona links), FunCoup recove
the cluster among the genes of RBP, and 22 of them (13%; pfc>0.05) matched the links of 
Imai et al. We modelled a random sampling of such a gene set (54 genes 
any links with FBS>4). The FunCoup network in general (Supplemental Fi
Ciona network in particular (not shown) are scale-free, i.e. there is no “typica
connectivity. Each network comprises a number of hubs, i.e. g
many other genes. If the RBP set were enriched in hubs, it could have biased
However, the non-parametric Mann-Whitney test did not discover any differ
connectivity distribution between RBP and the whole network (p0=0.60
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Supplementary Table 1. Data sources used as input in the FunCoup database. 
3-letter codes stand for:  

- mRNA co-expression (MEX)  
- protein-protein interaction (PPI) 
- sub-cellular co-localization (SCL) 
- protein co-expression (PEX) 
- shared transcription factor binding (TFB) 
- co-miRNA regulation by shared miRNA targeting (MIR) 
- domain associations (DOM) 
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Supplementary Table 2. Experimental designs used to define the optimal con
FunCoup.  
See aims and interpretations of the particular experiments in Methods and Suppl. Methods. 
The designs were orthogonal combinations of factors whe

figuration of 

re every combination of factor levels was tested in the 
dence features fed to FunCoup. Main 

d by measuring the outcome. In 
ificant if the variability inferred by it is significantly exceeds a reference term (usually 

the residual, or “error” one).  
To test the factors, particular option levels were chosen. For the tested organism (e.g. levels human, fly, worm, 
yeast) and FC class (FC-PI vs. FC-ML), the levels were considered random – to determine the variability that the 
choice species or FC definition may infer in general, i.e. in other cases. For the other factors, the levels were 
considered fixed, thus exactly evaluating the effects of the tested features (e.g., the four modes of using orthologs 
were fixed levels, as we wanted to analyze specifically these options). Being aware of which factors are fixed / 
random allowed choosing the proper statistical model in ANOVA. 
1 alternative inparalogs were pooled - unless another is explicitly stated. 
2 for prediction of FC-PI in any species, its own PPI data of any kind were not employed. 
* effect is significant at p0<0.05. 
** effect is significant at p0<0.01. 
 

same number of replicates (column 3). The column 2 shows the set of evi
ell as effects of their interactions were estimateeffects of the factors as w

ANOVA, an effect is sign
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Species ic locations, Original 
no. of 
entries 

Genom
amino acid sequences 

Homo sapiens oteo 25http://www.ebi.ac.uk/integr8/FtpSearch.do?orgPr meId=   29355 
Mus musculus eomeId=59http://www.ebi.ac.uk/integr8/FtpSearch.do?orgProt   32833 
Rattus norvegicu omeId=122s http://www.ebi.ac.uk/integr8/FtpSearch.do?orgProte   28682 
Drosophila 
melanogaster 

nogaster/dmftp://flybase.net/genomes/Drosophila_mela el_RELEAS
E3-1/GFF/whole_genome_annotation_dmel_RELEASE3-1.GFF.gz,  
ftp://ftp.fruitfly.org/pub/download/dmel_RELEASE3-
1/FASTA/whole_genome_translation_dmel_RELEASE3-
1.FASTA.gz    

18498 

Caenorhabditis 
elegans 

http://www.wormbase.org/CHROMOSOME?.GFF,  
ftp://ftp.sanger.ac.uk/pub/databases/wormpep/old_wormpep114/wor
mpep114  

22221 

Caenorhab
briggsae 

ditis embl.org/pub/current_cbriggsae/data/fasta/pep/Caenorhaftp://ftp.ens
bditis_briggsae.CBR25.pep.fa  

14233 

Anopheles gamb opheleiae ftp://ftp.ensembl.org/pub/current_mosquito/data/fasta/pep/An
s_gambiae.MOZ2a.pep.fa  16148 

Saccharomyces 
cerevisiae 

ftp://genome-
ftp.stanford.edu/pub/yeast/data_download/chromosom ature/s_cal_fe
erevisiae.gff3,  
ftp://ftp.ebi.ac.uk/pub/databases/SPproteomes//fasta_fi roteomesles/p
/4932.FASTAC  

6017 

Schizosacharom http://www.ebi.ac.uk/proteome/index.html?http://www.ebi.ac.uk/proyces 
pombe teome/YEAST/,  

ftp://ftp.sanger.ac.uk/pub/yeast/pombe/Protein_data/pompep  
5408 

Candida albicans1 ftp://ftp.pasteur.fr/pub/GenomeDB/CandidaDB/FlatFiles/CALBI.em
bl  5892 

Arabidopsis ftp://ftp.tigr.org/pub/data/a_thaliana/ath1/PSEUDOCHROMOSOM
ES/ 

27436 

Oryza sativa ftp://ftp.tigr.org/pub/data/Eukaryotic_Projects/o_sativa/annotation_d
bs/pseudomolecules/version_3.0/all_chrs/ 

61250 

 

Supplementary Table 3. The genome versions used in FunCoup. 
1 Mandatory citation: "Nucleotide sequence data for Candida albicans were obtained from the 
Stanford Genome Technology Center website at http://www-
sequence.stanford.edu/group/candida. Sequencing of C. albicans was accomplished with the 
support of the NIDR and the Burroughs Wellcome Fund. Information about coding sequences 
and proteins was obtained from CandidaDB available at 
http://www.pasteur.fr/Galar_Fungail/CandidaDB/ which has been developed by the Galar 
Fungail European Consortium (QLK2-2000-00795)."

http://www.ebi.ac.uk/integr8/FtpSearch.do?orgProteomeId=122
ftp://flybase.net/genomes/Drosophila_melanogaster/dmel_RELEASE3-1/GFF/whole_genome_annotation_dmel_RELEASE3-1.GFF.gz
ftp://flybase.net/genomes/Drosophila_melanogaster/dmel_RELEASE3-1/GFF/whole_genome_annotation_dmel_RELEASE3-1.GFF.gz
ftp://flybase.net/genomes/Drosophila_melanogaster/dmel_RELEASE3-1/GFF/whole_genome_annotation_dmel_RELEASE3-1.GFF.gz
http://www.wormbase.org/CHROMOSOME?.GFF
ftp://ftp.ensembl.org/pub/current_cbriggsae/data/fasta/pep/Caenorhabditis_briggsae.CBR25.pep.fa
ftp://ftp.ensembl.org/pub/current_cbriggsae/data/fasta/pep/Caenorhabditis_briggsae.CBR25.pep.fa
ftp://ftp.ensembl.org/pub/current_mosquito/data/fasta/pep/Anopheles_gambiae.MOZ2a.pep.fa
ftp://ftp.ensembl.org/pub/current_mosquito/data/fasta/pep/Anopheles_gambiae.MOZ2a.pep.fa
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/chromosomal_feature/s_cerevisiae.gff3
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/chromosomal_feature/s_cerevisiae.gff3
ftp://ftp.ebi.ac.uk/pub/databases/SPproteomes//fasta_files/proteomes/4932.FASTAC
ftp://ftp.ebi.ac.uk/pub/databases/SPproteomes//fasta_files/proteomes/4932.FASTAC
http://www.ebi.ac.uk/proteome/index.html?http://www.ebi.ac.uk/proteome/YEAST/
http://www.ebi.ac.uk/proteome/index.html?http://www.ebi.ac.uk/proteome/YEAST/
ftp://ftp.pasteur.fr/pub/GenomeDB/CandidaDB/FlatFiles/CALBI.embl
ftp://ftp.tigr.org/pub/data/a_thaliana/ath1/PSEUDOCHROMOSOMES/
ftp://ftp.tigr.org/pub/data/a_thaliana/ath1/PSEUDOCHROMOSOMES/
ftp://ftp.tigr.org/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_3.0/all_chrs/
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Supplementary Table 4. Compilation of high-confidence training sets for FunCoup. 
To find a trade-off between sample size and the quality, a specific set of condition parameters 
were used for each FC class and species. Parameters m, n, and the outcome (the number of 
protein-protein links selected under the conditions) are shown in the last line. 
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t Human Yeas 

ponents FC-P FC-
ML FC-PI FC-ML Com I  

 }  – – – – FBS × {M_spec, M_type
 – – – – FBS × <evidence per data type> 
 > – – – – FBS × <evidence per species
  Max_evid – ± – – FBS × {M_spec, M_type} ×
 FBS × <evidence clade profile> – – – – 
 FBS × <evidence clade configuration> – – – – 
 

entary Table 5. Search for potential bias in the naïve Bayesian network output after 

t effect. 
In e an score was decomposed to, and respective indicators were 

ocalization, 

ogaster, 

<evidence clade profile> : a 3-digit binary indicator of presence/absence of evidence from {the species 
itself, a close relative, a distant relative}. For example, when evidence for human FC 
was available only from human and mouse, the code was 110. 
<evidence clade configuration> : an integer indicator of the number of {the master species itself 
(can only be 0 or 1), a close relative (e.g. for human: mouse and rat; for yeast: always 0 – as no 
relatives with data), a distant relative (e.g. for human: not mammals)}. For example, when evidence 
for human FC was available only from human and mouse, rat, and yeast: 121. 

Supplem
multiple data sources integrated. 
 
Indicators: 
–: no effect. 
±: a tically insignificannumerically positive but statis

ach option the final Bayesi
produced for: 
M_spec: number of species with cumulative BS > FBS / ns. 
M_type: number of data sources with cumulative BS > FBS / nt; 

ns : number of non-empty species; 
nt :  number of non-empty data types. 

Max_evid: max(partial BS scores). 
<evidence per data type>: {co-expression, PPI data, sub-cellular co-l
phylogenetic score}. 
<evidence per species>: {human, M. musculus, R. norvegicus, D. melan
C.elegans, S. cerevisiae, A.thaliana}. 
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ce Interactor roles #pairs 
 

Sour
BIND2005 N/A N/A 34702 
HPRD200 N/A N/A 32475 6 

bait Bait 13 
bait Prey 13858 
prey 125392 Prey 
prey Unspecified role 7 
bait Unspecified role 7 
ancillary Ancillary 9 
ancillary Bait 9 
ancillary Prey 8 
ancillary Unspecified role 33 
fluorescence accept Fluorescence donor 27 
neutral component neutral component 5286 

IntAct200
 

fied role 2858 

7 

unspecified role unspeci
 
Supplementary Table 6. Breakdown of sources for human protein-protein interactions as input 
data in the FunCoup database, categorized by interactor roles. 
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 tion of links, % Frac

Species 

m
s)>0

and other 
species 2 

(othe
cies)>0.25 
pfc(same 

)<0.02 

mixed 
Total no. of links

pfc(sa
specie

e 
.25 

pfc
spe

 pfc(
)<0.0

r 

and 
species

Human 25.4 39.2 39896635.4 
Mouse 21.5 58.2 22900520.3 

Rat 2.9 93.9 1356393.2 
Ciona 0 100.0 759650 

Fly 19.4 66.5 11852214.1 
Worm 7.8 59.5 32.7 287178
Yeast 52.2 23.6 24.1 77229

Arabidopsis 4.8 74.0 21.2 94285
 
Supplementary Table 7. Proportion of links “uniquely” predicted by data from the same 
versus from other species. As most links have weak evidence from most sources, the cutoffs 
were chosen to approximate uniqueness as well as possible. 
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Supplementary Figures 
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ian pattern*, 

(Human Tissue Atlas – Su et al., 2004), our discretisation algorithm established 10 bins in the 
range of PLC, shown as thick red interval markers. Furthermore, the bins were assigned 
likelihood values for a novel gene pair to be metabolically linked (either in favour or against it 
for positive and negative likelihood ratios, respectively). 
 
* The local minimum at PLC≈0 is caused by the policy to take the best (maximally +1 for 
positive and minimally -1 for negative regions, respectively) of alternative pairs of microarray 
probes that might occur for some genes. 
 

Supplementary Figure 1. Distribution of co-expression metric and estimated likelihood of 
functional coupling. 
 
The distribution of Pearson linear correlations (PLC) in functionally coupled gene pairs 
differs from pairs randomly sampled. Although both tend to follow the Gauss
interpreting the differences as evidence of functional coupling is not trivial. In this case 
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  Chi-square, p0=0.050
  Chi-square, p0=0.001

 
 of continuous 

features: quantile vs. χ2-based.  
In the quantile case, the feature range was split at n equal quantity intervals (bins). In the χ2 case, the intervals 
were found using ratios of FC class presence/absence labels to the left and to the right of the putative cutpoints 
(see Methods). The algorithm was tested on 3 species (yeast, worm, and human), 2 types of FC (PI vs. ML), and 
varying the number of bins from 2 to 15. The results were processed under general linear model in 3-way 
ANOVA. The shown curves present the pooled (collapsed species and FC types) result. AUC values for 
specificity beyond the [99...100] % region produced similar results (not shown for their practical unimportance).  
 
 
 
 

Supplementary Figure 2. Testing two alternative algorithms for discretisation
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These are partial results of a larger experimental design analyzed with factorial ANOVA, see 
Supplementary Table 2. The performance was measured as area under the ROC curve. The 
design allowed estimating both the main effects of the five factors (the three shown here plus 
FC class and species) and their interactions. The not shown categories were employed as 
random factors to infer variability due to species and FC class. The plot visualizes the effects 
of the three first factors (species and FC class were pooled). The whiskers denote 0.95 
confidence intervals for the respective group means computed via least squares. 
 
 

 
Supplementary Figure3. Optimising FunC
 
This example shows how performance was a
FunCoup: 
 
 – Likelihood confidence check (including removal of insignificant nodes fro

network) - On/Off 
 – Choice of alternative inparalog pairs - Best/Mean 
– way of using orthologs - All-All/Diff-Diff/Seed-Seed 



 
Supplementary Figure 4A 

 

 
Supplementary Figure 4B 
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Supplementary Figure 4C 
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Supplementary Figure 4D 
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f FunCoup links. 

being coupled to a gene of the Ciona Regulatory Blueprint  

2. >30% of evidence from vertebrate species;  

functions derived from orthologs in H. sapiens by ENSEMBL annotations): 
iona “Regulatory Blueprint” genes; 

nes; 

Supplementary Figure 4. Independent validation o
A. Novel links for genes of the Ciona “Regulatory Blueprint”. 
These links w  discovered as ere
(Imai et al., 2006) under the conditions: 

1. confidence pfc>0.5; 

3. >30% of evidence from invertebrate species.  
 
Node legend (
Yellow: C
Grey: other ge

 Receptor; 
 G-protein; 
 Protein kinase; 
 Phosphatase; 
 Transcription factor; 
 β-catenin; 
 Heat shock protein; 
 Other. 

 
B. Genes of the core transcriptional regulatory network in human ES cells (Boyer et al., 2005) 
and  links between them found by FunCoup.  
Violet: Links from the article (Boyer et al., 2005); 
Grey: links found by FunCoup; 
Blue: pairs of functionally coupled paralogs. 
 
C. FunCoup’s perspective on the three critical signaling pathways in gliobla
development presented by The Cancer Genome Atlas Research Network (TCGARN, 2008

stoma 
). 

uding protein families and 
ual genes in a query 

ved sub-network 
ene-gene links), 
adjusted the layout 

in one 
me Atlas Data 

All the nodes from the pathway map in Figure 5 of that paper, incl
protein complexes, such as PI(3)K, RAS, AKT, were submitted as individ
to FunCoup (allowing only links between the queried genes). The retrie
recovered all of the connections from the three pathways (29 FunCoup g
except 7.  Using the jSquid applet at the FunCoup web site, we manually 
in accordance with node positions in the original publication. 
 
D. A typical example of FunCoup network of a set of mutated genes found 
glioblastoma multiforme tumor sample (downloaded from The Cancer Geno
Portal at http://cancergenome.nih.gov/dataportal/data/access/). In total, 145 
availab ets (req

sets were 
le. 9 s uiring 10 or more genes in each) were selected for the analysis. The 

 somatic 
mutations. 69 links connected 34 genes with each other in the FunCoup human network at 
pfc>0.02 (we ignored links going outside the set). To observe an average expected number of 
links between 34 genes, a randomization procedure was applied to the network that 
completely re-wired the network while keeping the nodes’ connectivities constant (Maslov 
and Sneppen, 2002). The link counts from this randomization were normally distributed. We 
used means and standard deviations to calculate Z-scores and respective p-values. The 
probability of observing 69 links by chance was, according to the one-sample z-test, p0<10-12 
(expected links).  
From the difference between the expected means and the observed values, we could calculate 

example set (barcode TCGA-02-0114-01A-01W) consisted of 53 genes with

3.33ˆ =x

http://cancergenome.nih.gov/dataportal/data/access/
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he FunCoup predictions) 

The poin ) 

the true discovery rate (the fraction of truly existing links among t

t estimate (i.e. ignoring the confidence interval of the sampled mean x̂
x

xxTDR
ˆ−

=  

for this particular sub-network equalled 0.51 and 0.59 at pfc>0.02 and pfc>0
These values are much higher then the formally d

.25, respectively. 
eclared pfc, which substituted TDR when 

the needed parameters were generally unknown. 
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ry. 
ts of 

s {human, fly, worm, Arabidopsis, yeast} with a variable subset of all available 

 the test result with evidence from only the 
species which the predictions were made for. Then, data from N other organisms were added, 

s were randomly selected from the total pool of 45 
without regard to the organism (N = {4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44}).  

Solid lines: pooled results over {human, fly, worm, Arabidopsis} (pane A), and over {human, 
fly, worm, Arabidopsis, yeast} (pane B).  
Square markers: group means; 
Whiskers: 95% confidence intervals of the group means. 
 

Supplementary Figure 5. Limits of data integration in interactome discove
In this test, we benchmarked the performance of recovering true FC links in the test se
each specie
evidence data.  
 
A. By limiting species evidence. The first point is

randomly pulled of the 4 available (thus, N = {0, 1, 2, 3, 4}.  
 
B. By limiting datasets. N evidence dataset

 
The procedure was repeated 9 times both in A and B. 
 
Dotted line: yeast (pane A only); 
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Supplementary Figure 6A: H. sapiens 
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Supplementary Figure 6B: S. cerevisiae 
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mance of different phylogenetic profiling scores 

t relevant areas. Two more earlier suggested scores, Pearson linear 
correlation PLC and PLC2 (Glazko and Mushegian, 2004), were also tested but are not shown 
here due to very poor performance. 

 
Supplementary Figure 6. Relative perfor
measured with ROC curves for human and yeast.  
 
The insets focus on the mos
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Specificity estimate  

aracteristic (ROC) 

pecificity” – 
 of various effects on the FunCoup predictor. 

The area under each curve served a performance measure of the predictor. For different 
purposes, sub-areas delineated with 75%, 90%, 96%, and 99% were considered separately. 
 
Sensitivity: the fraction of known functional links in a test set that the predictor recovered. 
Specificity estimate: the fraction of ALL links (unspecified in terms of functional coupling) 
that the predictor did not find coupled. In our experience, it this is a reliable substitute of a 
true negative set, which is never perfectly known in practice. 
 

 
Supplementary Figure 7. Benchmarking FunCoup by receiver operating ch
curves. 
The quality of FunCoup predictions was automatically quantified in the “s
“sensitivity” space to enable massive comparison
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A 

 
 
B 

 
Supplementary Figure 8.  Comparative network analysis in FunCoup.  Subnetworks in human (middle), mouse 
(top), and fly (left) were generated by submitting human presenilin-1 and –2 (hsa_PSEN1 and 2) to FunCoup, 
asking for one step of network expansion keeping the 20 strongest links with P>0.5, and inclusion of orthologous 
subnetworks in mouse and fly.  On the right, the colour legend for the links is shown in terms species source (A) 
or predicted class (B). At the lower right are two newly predicted interactors of the gamma secretase complex, 
BET1 and LFNG. 



H. sapiens
test on GO metabolic processes

0 200000 400000 600000 800000

Predicted FC total

0

500

1000

1500

2000

P
re

di
ct

ed
 F

C
 s

am
e

ty
pe

H. sapiens
test on GO signaling processes

0 200000 400000 600000 800000

Predicted FC total

0
1000
2000
3000
4000
5000
6000

P
re

di
ct

ed
 F

C
 s

am
e

ty
pe

D. melanogaster
test on GO metabolic processes

0 200000 400000 600000

Predicted FC total

0
500

 48 

1000
1500
2000
2500
3000

P
re

di
ct

ed
 F

C
 s

am
e

ty
pe

D. melanogaster
test on GO signaling processes

0 200000 400000 600000

Predicted FC total

0
50

100
150
200
250
300
350

P
re

di
ct

ed
 F

C
 s

am
e

ty
pe

 Predictor: FC-SL  (signaling links)
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 for signalling 
enes belong to 
sduction” or 

lic process”) from 
Consortium, 2008). We trained FunCoup on reference sets 

from KEGG, either signalling or metabolic pathways. A FunCoup predictor trained on e.g. 
signalling pathways should thus preferentially find links where both genes are annotated as 
signalling in GO. As seen in the plots, this ability was clearly superior for predictors trained 
on the same class compared to those trained on the other class. The separation was also found 
to grow with confidence (see cross-validation test in Suppl. Table 2 “Differential FC type 
prediction”). Curves present counts at variable confidence cutoff: from 0.02 (upper right 
corner) to 1.00 with increment steps=0.01. 
 

Supplementary Figure 9. Validation of predicted functional coupling class
versus metabolic. Links predicted by FunCoup were checked whether both g
the same biological process, here either signalling (GO:0007165 “Signal tran
GO:0007267 “Cell-cell signalling”) or metabolic (GO:0008152 “Metabo
the GO database (Gene Ontology 



 
 
Supplementary Figure 10. View of the novel genes in the context of P
pathways. The retrieved human sub-network contains all genes link

• Genes of Parkinson and Alzhe

arkinson and Alzheimer 
ed at confidence >0.5 to:  

imer pathways according to KEGG; 
 to MIM database; 

ologs of a-synuclein toxicity; 
s. 
CytoScape software with the force-directed network layout 

ce, genes placed in the middle tend to be more 
ed with others in the sub-network. 

air, only the maximally scoring line is shown): 

tein complex members. 
 
Node categories: 
Yellow: pathway KEGG05020 (Parkinson’s disease). 
Pink:  pathway KEGG05010 (Alzheimer’s disease). 
Orange: Parkinson’s disease genes by MIM database. 
Magenta: Parkinson’s disease genes by MIM database. 
Blue: Yeast modifiers of a-synuclein toxicity (squares) and their human orthologs (circles).  
Red: 12 novel human PD candidate genes (circles) and their yeast orthologs (squares). 
Black: other. 
 

• Genes associated with Parkinson and Alzheimer disease according
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The view was prepared in 
(weighting for link confidence). Hen
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Edge categories (for each protein-protein p
Blue: metabolic links. 
Green: signaling links. 
Red: protein-protein interactions. 
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ectivity (number of network edges per node) in the human 
network predicted by FunCoup at confidence cutoffs FBS=3 and FBS=7, respectively. 
C: Distribution of connectivity in the network of experimentally known human interactions 
(union of BIND, HPRD, and IntAct databases). The PPI score cutoff = 0.3 guarantees 
validation in more than one experiment. 
The green lines approximate the probability P(k) that a node has k links with a power law 
function (Barabasi and Albert, 1999). 
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Supplemental Figure 11.  FunCoup-predicted networks are scale-free. 
A and B: Distribution of conn
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