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ABSTRACT

Background: Low-complexity sequence regions present a common
problem in finding true homologs to a protein query sequence.
Several solutions to this have been suggested, but a detailed
comparison between these on challenging data has so far been
lacking. A common benchmark for homology detection procedures is
to use SCOP/ASTRAL domain sequences belonging to the same or
different superfamilies, but these contain almost no low complexity
sequences.
Results: We here introduce an alternative benchmarking strategy
based around Pfam domains and clans on whole-proteome data
sets. This gives a realistic level of low complexity sequences. We
used it to evaluate all six built-in BLAST low complexity filter settings
as well as a range of settings in the MSPcrunch post-processing filter.
The effect on alignment length was also assessed.
Conclusion: Score matrix adjustment methods provide a low false
positive rate at a relatively small loss in sensitivity relative to no
filtering, across the range of test conditions we apply. MSPcrunch
achieved even less loss in sensitivity, but at a higher false positive
rate. A drawback of the score matrix adjustment methods is however
that the alignments often become truncated.
Availability: Perl scripts for MSPcrunch BLAST filtering and
for generating the benchmark dataset are available at http://
sonnhammer.sbc.su.se/download/software/MSPcrunch+Blixem/
benchmark.tar.gz
Contact: kristoffer.forslund@sbc.su.se
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
A crucial part of many bioinformatics applications is determination
of whether or not two sequences should be seen as homologous, that
is to say, that they share a common ancestral sequence. While several
techniques have emerged for achieving this, pairwise alignment-
type methods have emerged as the leaders in the field; by aligning
the sequence under a hypothesis of a common origin, the minimal
distance between them, under some measure, becomes defined. The
popular BLAST approach (Altschul et al., 1990) provides statistical
support for evaluating such measures, by comparing with the number
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of equally similar sequences found in a database search in the
absence of homology. As a result, it is possible to determine whether
two sequences can be seen as homologous with a given degree of
confidence, under a given set of assumptions on evolutionary rates
and similar properties.

Many protein or nucleic acid sequences are classified as
having low complexity, for instance by being composed of
repetitive subsequences or being heavily biased towards a subset
of characters in the given alphabet. This is a common source
of false positive homology assignments: while there is little
reason to believe these sequence features stem from a common
origin in many cases, proteins or genes that share them will
nevertheless appear relatively similar to sequence comparison
algorithms. The classical approach towards handling this in the
BLAST software is to apply low-complexity masking. By adapting
a tool that recognizes regions of low complexity, these may be
masked so that the algorithm ignores them (Altschul et al., 2005;
Wootton and Federhen, 1996; Yu and Altschul, 2005; Yu et al.,
2003). In the case of nucleotide sequences, the RepeatMasker
(http://www.repeatmasker.org) application, has proven to be very
effective. It recognises both low-complexity regions, tandem
repeats, and interspersed repeats such as transposons, and replaces
these sequence regions with strings of mask characters.

Another approach is to adapt the evolutionary model to the
sequence composition of query and database protein in a homology
search. This has recently been implemented in BLAST by adjusting
the substitution matrix according to the sequences if any of a set
of criteria are met (Altschul et al., 2005; Schäffer et al., 2001;
Yu and Altschul, 2005; Yu et al., 2003). The inverse approach, i.e.
leaving the substitution matrix unchanged but evaluating whether a
given match score is mainly caused by biased sequence composition,
has long been implemented in the MSPcrunch BLAST parser
(Sonnhammer and Durbin, 1994).

We here focus specifically on the issue of low complexity
as an error source in protein homology detection. This is
important for applications such as the InParanoid orthology database
(Berglund et al., 2008), which relies on finding as many correct
homology relationships as possible between two proteomes. We
wish to compare available low-complexity handling approaches
to determine which method most effectively avoids false positive
homology assignments while retaining as many bona fide homologs
as possible. To this end, we needed a reliable dataset that covers a
wide range of protein types and contains both true positive and true
negative relationships.
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Many homology detection methods have been evaluated using
the SCOP/ASTRAL dataset as a benchmark (Altschul et al.,
2005; Chandonia et al., 2004; Wistrand and Sonnhammer, 2005;
Yu et al., 2006). SCOP is a domain definition database derived
from experimentally determined protein 3D structures, and groups
domains in those proteins into superfamilies if there are structural
reasons for considering them homologous (Murzin et al., 1995).
ASTRAL is a database of the corresponding amino acid sequences
(Chandonia et al., 2004). Generally, ASTRAL sequences belonging
to the same superfamily can reliably be considered homologous,
whereas those belonging to different superfamilies are non-
homologous. For our purposes, this is insufficient for several
reasons. First, sequences in ASTRAL contain a far smaller fraction
of low-complexity sequences than a dataset containing all human
protein sequences in ENSEMBL (Wootton and Federhen, 1996).
This is not unexpected, as SCOP/ASTRAL is a domain dataset
rather than a full-length protein dataset, but also because it is
biased towards easily crystallizable and well-characterised proteins.
Second, it is limited in size and coverage to the proteins represented
in the PDB. While the SUPERFAMILY (Gough et al., 2001)
database allows assignment of SCOP domains via HMMs to other
proteins, it is equally biased to protein domains that have been
structurally determined.

To avoid this bias and obtain a more representative dataset,
we here exploit the domain architecture of multi-domain proteins
in Pfam (Finn et al., 2008). We define trusted positive and
negative training sets as proteins with either identical or entirely
different domain architectures. Our comparison is made in the
context of whole organism versus organism protein homology
searches. Genome coverage and expandability of the benchmark
dataset is important to us, as well as avoiding any bias against
particular categories of proteins, for instance membrane proteins.
Because of this, we present a complementary benchmark test
for homology detection approaches based on the Pfam database,
including the recent addition of Pfam clans, a higher-level hierarchy
of evolutionary related domain families.

2 METHODS

2.1 Protein domains
Our work is based on using the distant evolutionary relationships represented
in proteins where the domain architectures are the same. Protein domains are
recurring sequence or structure elements found in several different contexts,
and several frameworks for classifying and recognizing instances of a domain
family have been developed. In this work, we employed specifically version
22.0 of the Pfam database (Finn et al., 2006, 2008; Sonnhammer et al.,
1998), which employs hidden Markov model (Durbin et al., 1998; Krogh
et al., 1994) profile techniques for defining and detecting domains; these
profiles are built using manually curated alignments of sequences considered
to belong to the same domain.

2.2 Defining a benchmark dataset for homology
detection

For defining a set of high-confidence homologous proteins, our basic
approach was the assumption that two multi-domain proteins, with exactly
the same sequence of domains, are unlikely not to have a common ancestor.
We based this on the relative rarity with which domain architectures arise
more than once in evolution. While in some cases non-homologous proteins
may have identical domain architectures, it is sufficiently uncommon for us

to disregard at this point (Forslund et al., 2008; Gough, 2005). However,
it is probable that a training set limited to only proteins with exactly the
same domain architecture may be unrealistically restrictive, and unable to
represent situations where weak yet significant indication of homology exists.
Because of this, we also considered as homologs pairs of proteins with the
same domain architecture, where we classified two domains as equal if they
were members of the same Pfam clan.

Defining a negative test set for homology, however, is more difficult.
Again, we employed the concept of protein domains. Using sophisticated
techniques such as the Pfam hidden Markov models, common domain
assignment is highly sensitive and applicable at far larger evolutionary
separation than direct sequence comparison methods such as protein BLAST
(Madera and Gough, 2002; Wistrand and Sonnhammer, 2005). If two proteins
both have well-defined domain architectures, but share no domains at all,
chances are low that they should be homologs. However, as Pfam domains
from different families are known to be sometimes related, we further
required that the proteins contain no domains which are part of the same
Pfam clan (Finn et al., 2006).

To make the benchmark more robust, we required that proteins in both the
negative and positive set contained at least two domains. For any Pfam family
classified as Repeat or Motif, any sequences of such domains were collapsed
into a single pseudo-domain, as it is known that the number of elements
in such repeat regions vary significantly across even short evolutionary
distances.

2.3 Sequence sources
We considered on one hand the situation of finding homologous genes
between two species, and on the other, of finding within-species homologs.
The reason for this is that the amino acid composition and frequency of low
complexity regions often have species-dependent features. For instance in
InParanoid, we observed very different filtering needs for intra-species versus
inter-species comparisons. For the purpose of this benchmark, we selected
a small number of species that represent different evolutionary contexts,
as well as some species where unique issues are a factor. We have strived
to represent species with a varying degree of evolutionary separation from
Homo sapiens. Thus, the list of species included are human, chimpanzee
(Pan troglodytes), worm (Caenorhabditis elegans), yeast (Saccharomyces
cerevisiae), slime mold (Dictyostelium discoideum), the plant Arabidopsis
thaliana and the bacterium Escherichia coli, K12 strain. Dictyostelium was
chosen specially, as it contains a vast number of low-complexity regions such
as single-residue or pair repeats, which present a large risk of false positive
homology assignments unless corrected for (Eichinger et al., 2005)

The proteome sequences for these species were acquired from the
appropriate model organism databases, after which Pfam domain detection
was performed using the HMMER version 2.3.2 (Eddy, 2008) software
and the HMMs corresponding to version 22.0 of Pfam. The analysis was
performed with an all versus all query within each species included, and with
the human proteome used as a query against all other species, representing
a situation where we seek all homologs in model organisms.

2.4 Methods evaluated
Our analysis is limited to approaches that attempt to correct for low-
complexity regions in the context of a protein BLAST database search,
as these are the circumstances under which the issue might arise for the
InParanoid orthology assignment framework.

Classically, protein BLAST provides either ‘hard’ or ‘soft’ sequence
masking using the SEG filter (Wootton and Federhen, 1996), which can
be tuned differently from its default parameters. When SEG flags a region as
having low complexity, under soft masking, BLAST local alignments cannot
originate in that region, but may extend across it if doing so increases the
alignment score. Under hard masking, residue letters in regions flagged by
SEG are changed into X, which penalizes alignment across those regions.
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In recent versions of the BLAST software, a feature has been added
enabling the adjustment of the substitution matrix according to the amino
acid distributions of the two sequences being compared. This may be applied
to all comparisons, or merely to comparisons that fulfill specific risk criteria,
such as very similar composition or very different lengths (Altschul et al.,
2005; Schäffer et al., 2001; Yu and Altschul, 2005; Yu et al., 2003). Under the
adjusted substitution matrix, similarities deriving merely from compositional
bias will receive a lower score.

2.5 The MSPcrunch method
The MSPcrunch BLAST parser (Sonnhammer and Durbin, 1994) uses a
different approach to avoid biased composition matches. For each BLAST
local alignment, the expected score is computed for two random sequences
with the same amino acid composition and gap distribution as the query and
database sequence. If the actual score is not significantly higher than this
expected random score, that particular local alignment is excluded from the
search. We here update the original MSPcrunch method to also model the
gap penalty.

The filtering works as follows. Consider a BLAST High-scoring Segment
Pair (HSP). Let Q and D be vectors of local amino acid frequencies for the
query and database sequence, respectively. It can then be shown that the
expected score of a BLAST alignment of two random sequences with these
amino acid compositions is

Sexp =L
∑

i

∑

j

QiDjMij

where L is the length of the specific HSP being analyzed and M is the scoring
(substitution) matrix. The local frequency vectors Q and D for the HSP are
estimated using pseudocounts as

Qi = Qci +αpi

L+α
; Di = Dci +αpi

L+α
.

given raw amino acid counts Qc and Dc for the query and database HSP
sequences, respectively, and prior amino acid frequencies p. α is a scaling
factor empirically set to 5. The biased composition ratio β is then defined as

β= S−Sexp

S−LMexp

where Mexp is the frequency-weighted expected score of random sequences
when using score matrix M, as

Mexp =
∑

i

∑

j

pipjMij

For M = BLOSUM62, which was used for all alignments in the present work,
Mexp is −0.945. The ratio β represents the score increase above what is
expected given the composition, normalised by the score increase relative
to random sequences. The filtering is then performed on an HSP per HSP
basis. If β falls below a certain threshold, the composition of the HSP is
considered too biased, and it is excluded from the alignment of the query and
database proteins as a whole. The threshold βmin was set to 0.8 in previous
applications, but in the present work, we also evaluated a wider range of
parameter values.

Extending the algorithm to take gaps into account is straightforward.
We also evaluated this strategy (data not shown), and found that using
gaps increased MSPcrunch sensitivity, but decreased precision even more,
resulting in relatively lower Matthew’s correlation coefficient (MCC) scores.
Hence, the ungapped version was used in the tests reported in this work.

2.6 Test strategies
All of these approaches may be tuned in different ways, by supplying different
parameters. We evaluated their performance under a range of parameters on
the dataset in question by performing an all versus all homology search both
within and between the proteomes. For each method, we investigated its

ability to detect true homolog pairs and its rate of reported non-homologous
proteins above a given cutoff. See Supplementary Table S1 for details on the
tested parameter settings.

Homology searches within the proteome datasets, using the same
proteome as batch query, were performed using version 2.2.18 of the NCBI
BLAST standalone application. For each query-database sequence pair, the
highest scoring HSP was chosen. Other HSPs were considered for inclusion
in order of descending scores. These were retained if they were compatible
(preserving relative sequence order) with all the previously retained HSPs,
and did not overlap with any of those by more than 5%. For all HSPs retained,
the sum of their bit scores was taken. Only hits with a bit score sum of at
least 40 were considered. The same software and parameters were used for
the proteome versus proteome searches.

2.7 Performance evaluation metrics
A positive match is defined as a significant hit under the scheme
in question, whereas a negative is the absence of a hit. Let TP be
the number of true positives, TN the number of true negatives, FP
the number of false positives and FN the number of false negatives.
Sensitivity (or recall) is defined as TP/(TP + FN) and precision (or
positive predictive value) is defined as TP/(TP + FP). MCC is defined as
(TP · TN − FP · FN)/

√
[(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)].

ROC curves for the methods tested are displayed in Figure 3. These
were generated by ranking all homology assignments in each dataset by
bit score. The hits were then pooled across all datasets for each method,
and the resulting meta-dataset was sorted according to rank in the original
datasets. Cumulative counts of true and false hits were plotted as ROC
curves showing the performance of the various method for successively
lower-scoring homology assignments.

2.8 Effects of low-complexity filters on alignment
lengths

Even for homology assignments that are retained when low-complexity filters
are applied, the length of the region aligned by BLAST, may be shorter. To
investigate the degree to which this occurs, as well as how the effect might
differ between methods, we performed an analysis as follows. For each low-
complexity filtering method, we considered every true positive homology
assignment that it shares with the results achieved by running unfiltered
BLAST (our negative control), under the assumption that unfiltered yields
the longest possible alignment. For each such assignment, we considered the
maximum aligned length, which is the longest aligned residue span on either
the query or database sequence. If the match contained multiple consistent
HSPs using InParanoid’s consistency rules (Remm et al., 2001), then the
distance from the start of the first HSP to the end of the last HSP was used.
We then recorded the number of assignments where the maximum segment
length was half the length or shorter with the filter applied than without.
The results of this analysis for each combination of method and dataset are
shown in Supplementary Tables S3A and B.

3 RESULTS
A benchmark dataset was generated for each genome versus
genome comparison by flagging pairs of proteins as homologs or
non-homologs depending on their Pfam domain family and clan
assignments. Only proteins with domains from at least two different
families were included. Pairs where the sequence of domains was the
same (or where corresponding domains belonged to the same clan)
were considered true homologs, whereas pairs where no domain in
the one protein was the same as or shared a clan with any domain
in the other protein were considered true non-homologs. This was
done for human and six other species, ranging from closely related
(chimpanzee) to distantly related (E.coli). All species but one were
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Fig. 1. Intraspecies benchmark result. The average precision and sensitivity
across all species comparisons (each species versus itself) is plotted for
each method. M<X>: MSPcrunch βmin=0.<X>; NF: No filtering; SS: SEG
soft masking; SH: SEG hard masking; C1: 2001 version of score matrix
adjustment; C2: compositional score matrix adjustment, conditional; C3:
compositional score matrix adjustment, unconditional.

eukaryotes, as these tend to have far more low complexity sequences
than prokaryotes. The number of positive and negative pairs in each
species comparison are shown in Supplementary Table S2.

In total, 11 methods were benchmarked for their ability to
avoid biased composition matches. The methods were all parameter
variations of either the NCBI BLAST program or of an updated
version of the MSPcrunch BLAST post-processing application.
BLAST was run either without filter, with two variants of the
SEG filter, or with three composition-based score matrix adjustment
methods. MSPcrunch was run with five different cutoffs. Note that
the score matrix adjustment methods and MSPcrunch always were
paired with SEG soft masking.

The full details of the benchmark results are listed in
Supplemental Table 1, providing sensitivity and precision values
for each species. In general, the precision showed much stronger
dependence on the filtering method than the sensitivity. There
were substantial differences between the performances on different
species comparisons. For instance, E. coli and A. thaliana yielded
high intraspecies precision with all methods, even without any
filtering, but for all others species filtering methods were needed
to obtain this. For Dictyostelium, which contains a large fraction
of low-complexity regions, paralog assignments are more or less
useless (precision 1.7%, sensitivity 87.0%) without low-complexity
filtering. However, it is also clear that the score matrix adjustment
approach is sufficient to avoid these errors even in such extreme
cases without sacrificing much sensitivity.

In order to summarize the results, we plotted for each method
the arithmetic mean of the precision versus sensitivity values
in Figures 1 (intraspecies comparisons) and 2 (interspecies
comparisons). In both these plots, the score matrix adjustment
method (conditional or unconditional) yields the highest precision
at relatively modest loss of sensitivity.
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Fig. 2. Interspecies benchmark results. The average precision and sensitivity
across all species comparisons (H.sapiens versus other species) is plotted for
each method. M<X>: MSPcrunch βmin=0.<X>, NF: No filtering; SS: SEG
soft masking; SH: SEG hard masking; C1: 2001 version of score matrix
adjustment; C2: compositional score matrix adjustment; conditional, C3:
compositional score matrix adjustment, unconditional.

Another way to summarize the results is to calculate the Matthew
Correlation Coefficient (MCC), which reflects both precision and
sensitivity at the same time (see Tables 1 and 2). On this test, the
new score matrix adjustment methods performed on average the
best. Next best was either the old-score matrix adjustment method
(intraspecies) or MSPcrunch β = 0.85 (interspecies). However, the
MCC difference between these methods results was small. The
overall highest MCC in the test was obtained by MSPcrunch, and
in several of the species comparisons (four intraspecies and two
interspecies) MSPcrunch outperformed the score matrix adjustment
approaches. A drawback with MSPcrunch is that no β parameter was
consistently the best choice, but the optimum was generally found
in the range 0.8–0.9.

By pooling results across all species comparisons, we also
generated receiver operating characteristic (ROC) curves for the
various methods, as shown in Figure 3. Also here the score matrix
adjustment methods had the best trade-off between precision and
sensitivity, but could not fully achieve the same coverage as the
other methods.

In summary, based on the range of species comparisons evaluated
here, if avoiding false positives is the main objective then the score
matrix adjustment methods are most reliable. However, they do
come with a higher false negative rate, so if sensitivity is more
important then MSPcrunch can be a better choice. Obviously, not
filtering at all gives the highest sensitivity, but runs the danger of
an extreme false positive rate. Whether or not compositional bias
is applied universally or conditionally (corresponding to the -C2
and -C3 options in NCBI BLAST, respectively) made very little
difference in our benchmark, implying that the application criteria as
described byAltschul et al. (2005) were strict enough to capture most
cases where score matrix adjustment would cause drastic differences
in outcome.

An additional factor to consider is the degree to which biologically
significant alignments may be truncated by the low complexity
filtering methods. We found that up to 6% of the true positive
homology assignments were reported with alignments truncated
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Table 1. Intraspecies MCC for each method across all species versus itself comparisons

EC–EC AT–AT SC–SC DD–DD CE–CE PT–PT HS–HS Average

No filtering 0.895 0.869 0.685 0.109 0.872 0.534 0.511 0.639
SEG soft masking 0.894 0.886 0.762 0.173 0.896 0.632 0.616 0.694
SEG hard masking 0.884 0.893 0.823 0.805 0.865 0.798 0.797 0.838
Score matrix adjustment, 2001 version 0.885 0.894 0.835 0.873 0.893 0.839 0.842 0.866
Score matrix adjustment, unconditional 0.886 0.897 0.843 0.889 0.897 0.883 0.888 0.884
Score matrix adjustment, conditional 0.886 0.897 0.843 0.889 0.897 0.883 0.888 0.883
MSPcrunch, β= 0.6 0.894 0.898 0.826 0.409 0.912 0.717 0.704 0.766
MSPcrunch, β= 0.8 0.894 0.901 0.844 0.789 0.899 0.846 0.847 0.860
MSPcrunch, β= 0.85 0.890 0.898 0.838 0.825 0.880 0.854 0.855 0.863
MSPcrunch, β= 0.9 0.865 0.891 0.825 0.823 0.852 0.851 0.853 0.852
MSPcrunch, β= 0.95 0.755 0.856 0.748 0.712 0.795 0.816 0.817 0.786

The highest MCC for each species comparison is bolded.

Table 2. Interspecies MCC for each method across all species versus H.sapiens comparisons

HS–EC HS–AT HS–SC HS–DD HS–CE HS–PT Average

No filtering 0.567 0.424 0.484 0.242 0.519 0.489 0.454
SEG soft masking 0.616 0.514 0.579 0.325 0.618 0.594 0.541
SEG hard masking 0.665 0.676 0.709 0.540 0.778 0.773 0.690
Score matrix adjustment, 2001 version 0.667 0.715 0.744 0.703 0.841 0.819 0.748
Score matrix adjustment, unconditional 0.672 0.749 0.773 0.750 0.878 0.870 0.782
Score matrix adjustment, conditional 0.672 0.748 0.774 0.749 0.876 0.869 0.781
MSPcrunch, β= 0.6 0.666 0.656 0.693 0.557 0.736 0.682 0.665
MSPcrunch, β= 0.8 0.685 0.740 0.783 0.687 0.839 0.825 0.760
MSPcrunch, β= 0.85 0.686 0.738 0.779 0.686 0.843 0.835 0.761
MSPcrunch, β= 0.9 0.683 0.733 0.770 0.677 0.840 0.833 0.756
MSPcrunch, β= 0.95 0.652 0.677 0.728 0.646 0.808 0.798 0.718

The highest MCC for each species comparison is bolded.

Fig. 3. ROC curves for methods based on results pooled across all species
in the benchmark.

more than 50% by the filtering (Supplementary Table 2). This can
have large consequences for applications where the match length is
an important parameter, e.g. orthology analysis (Remm et al., 2001).

The truncation varied between datasets, but was generally highest
for the SEG hard masking and score matrix adjustment methods,
whereas it was low for SEG soft masking and most MSPcrunch
settings.

4 DISCUSSION
We have presented a basic approach to defining a benchmark dataset
for homology inference evaluation, based on domain assignments.
As such data is easily made available for any set of amino acid
sequences, scaling up or regenerating such a benchmark dataset is
trivial and immediately available. A potential concern is that if the
Pfam clan system is incomplete, some negatives in our benchmark
would be true homologs. While this is certainly a potential source of
error, we feel that our approach is justified given the lack of better
options for large-scale benchmarks of this type. As previously stated,
a SCOP benchmark, while clearly very accurate, fails to capture
method performance in the types of situations we are interested in.
An alternative could be to use random pairs as negatives, but as
the present approach could be seen as an exhaustive enumeration of
random pairs where the majority of potential homologs are removed,
we estimate that the frequency of false negatives in the benchmark
should always be lower than with a random pair-based negative set.

Our negative homology dataset could be further improved by
considering Pfam-A domains that as yet share no clan as potential
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clanmates for this purpose if they are similar enough with respect to
an HMM–HMM comparison, even if they are not currently classified
as such. Another possible improvement could come from removing
any protein pairs with shared Pfam-B domains from the set of
non-homologs. In addition, the negative homology dataset could
be restricted only to proteins where there are no long unassigned
regions, though this might also remove many low-complexity
regions that we are interested in.

We are aware that the choice of species in the benchmark will
influence its outcome. In this case, however, the species pairs defined
by our selection span the entire range of evolutionary separation, as
well as a wide variety of different types of organisms. Expanding
the dataset further would be trivial. However, we saw sufficient
agreement between species for the general trends, and therefore did
not choose to include more species for the purpose of the present
analysis. While there was variation in the results we achieve between
different species comparison, some general patterns seemed to hold
true.

No benchmarked method (unfiltered BLAST excluded) was able
to reach more than ∼87% sensitivity, whereas the precision reached
almost to 100%. Looking at the homolog pairs not detected for
the comparisons with the highest sensitivity, about half of these
appeared to be cases where domains belonged to different families
but the same clan. As Pfam clans represent a large evolutionary
separation, usually detectable only with profile-based methods such
as hidden Markov models (Madera and Gough, 2002; Wistrand and
Sonnhammer, 2005), this is hardly unexpected. A quarter of the false
negatives involved proteins consisting only of domains classified
in Pfam as type Motif/Repeat. As these are frequently short and
variable in copy number it is perhaps not surprising that these are
hard to find by BLAST.

Our results show once more how absolutely crucial handling
of biased sequence composition is in any form of sequence
similarity-based homology assignment, especially for genomes with
uncommon features such as a large incidence of simple repeats.
We compared some approaches thus far presented for handling
this problem, including past and present default options for the
popular BLAST search algorithm. In conclusion, the recently added
score matrix adjustment approach appears to be the most reliable
solution among those tested, for the range of species comparisons
we evaluated. However, MSPcrunch can achieve higher sensitivity,
though at a relatively larger trade-off in precision, than score matrix
adjustment, particularly with a β threshold adapted for the species in
question using a benchmark strategy such as the one outlined here.

Homology searching is often used to extract information from the
obtained alignment, for instance for domain analysis. For ortholog
identification it is common to require the match to span more than
50% of the sequence to be considered. This may be compromised
when using strong complexity filters, particularly the score matrix
adjustment methods and hard masking. When using such approaches
it may be necessary to re-align the hits using less or no filtering in
a second phase to obtain the full alignment extent. Given that the
sequences are considered true homologs, there is little reason to
truncate the alignment relative to the unfiltered version. An option
in BLAST to remove the score matrix adjustment for the final
alignment would therefore be very useful.
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