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ABSTRACT

Motivation: Certain protein domains are known to preferentially
interact with other domains. Several approaches have been
proposed to predict domain–domain interactions, and over nine
datasets are available. Our aim is to analyse the coverage and
quality of the existing resources, as well as the extent of their
overlap. With this knowledge, we have the opportunity to merge
individual domain interaction networks to construct a comprehensive
and reliable database.
Results: In this article we introduce a new approach towards
comparing domain–domain interaction networks. This approach is
used to compare nine predicted domain and protein interaction
networks. The networks were used to generate a database of unified
domain interactions, UniDomInt. Each interaction in the dataset is
scored according to the benchmarked reliability of the sources.
The performance of UniDomInt is an improvement compared to
the underlying source networks and to another composite resource,
Domine.
Availability: http://sonnhammer.sbc.su.se/download/UniDomInt/
Contact: Erik.Sonnhammer@sbc.su.se

1 INTRODUCTION
Proteins are social molecules that network with other proteins. If
we are ever to properly understand the processes that make up life,
it is essential that these interactions and networks can be reliably
predicted and understood. High-throughput techniques exist for
experimentally identifying protein–protein interactions (PPI), but
these methods have a tendency to produce a high rate of false
positives and false negatives (Mrowka et al., 2001). This creates
a need to be able to accurately predict and assess PPI in a reliable
manner.

A good beginning for prediction of PPI is to accurately
predict domain–domain interactions. Domain interactions are often
conserved across species (Itzhaki et al., 2006). Several approaches
for predicting domain–domain interactions have been developed.
The first approach was the association method, where domains
were mapped to interacting proteins. In this method, the domain
interactions selected are those were the frequency of the domain
interaction exceeds the number of expected interactions given the
domains’ abundance in the proteome (Kim et al., 2002). Extensions
to this approach include ‘domain pair exclusion analysis’ (Riley
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et al., 2005) and random forest optimization (Chen and Liu, 2005). In
‘domain pair exclusion analysis’ a new score was introduced, based
on the log ratio of two domains interacting over not interacting. The
random forest optimization method explores all possible domain
interactions over all available domains using predicted PPI. An
advantage of using random forest optimization is that it considers
domains as a protein feature and can therefore estimate the effect of
multi-domain combinations on interactions. Phylogenetic profiling
has also been used for predicting domain–domain interactions, i.e.
by inference from co-occurrence of domains across various species
(Pagel et al., 2004).

It is also possible to integrate different types of data for predicting
domain interactions, for instance by combining gene ontology
functional annotation with protein interaction data as done in ME
using a Bayesian approach (Lee et al., 2006). Also co-evolutionary
analysis is used for generating domain networks. In this approach the
co-evolution between domains is estimated by analysing structure
and sequence (Jothi et al., 2006). Thus, a wide variety of ideas have
been developed in order to predict domain-domain interactions, with
different degrees of reliability.

Domine is a composite protein domain interaction resource,
generated by combining eight predicted networks (Raghavachari
et al., 2008). Each predicted interaction is assigned to one of three
confidence levels (high, medium and low) using a system based
on three rules. A prediction by ME or by two methods gets high
confidence. If not, it is assigned low confidence, or medium if both
domains have the same GO terms.

We here introduce a benchmarking strategy for obtaining a
continuous confidence score. A standard approach to evaluate
domain–domain interactions is to calculate the overlap of
interactions in a reference database. The standard reference
databases are iPfam and 3DID (Finn et al., 2005, Stein et al., 2005).
The sources of these interactions are experimentally derived three-
dimensional structures in the Protein Data Bank (Westbrook et al.,
2002). To use these resources as references is a sensible choice
as the structure-derived interactions are the closest thing to true
domain–domain interactions. There is however a potential danger
that this approach is biased due to the limitations of reaching certain
structure spaces of the proteome with NMR or X-ray crystallography
(Mrowka et al., 2001).

The standard overlap approach is here further developed for
domain interaction network comparisons into a measure called
weighted overlap. This expanded approach compares overlapping
interactions with possible overlapping interactions. The advantage
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of this approach is that the result is no longer as affected
by the difference in size between networks and their domain
composition. The developed measure was used to compare nine
predicted networks. The networks were then scored and combined
in a weighted way into the Unified Domain Interaction database
(UniDomInt).

2 MATERIALS AND METHODS

2.1 Networks and domain space
We define I as the set of protein–domain interactions in a domain network.
The domain space D is defined as the set of domains in I , meaning that all
domains in D must be present in at least one interaction in I . From a network
point of view the domains can be seen as nodes and the interactions as edges
between them.

2.2 Shared domain space and potential number of
shared interactions

For two networks Ia and Ib and their domain spaces Da and Db, the common
domain space Dab is Da ∩Db. For Ia, the number of potentially shared
interactions, Ia→b, is the number of interactions where both interacting
domains belong to Dab, and likewise Ib→a is the number of potentially shared
interactions for Ib.

2.3 Measures for comparing networks
To assess the level of similarity between two networks, it is necessary to know
the potential number of shared interactions given the shared domain space
(see Fig. 1). The weighted overlap, Wo, is the number of common interactions
in the two networks, divided by the number of potential interactions given
both networks:

Wo =
(

2(Ia ∩Ib)

Ia→b +Ib→a

)

2.4 Reference set
A reference set has been generated to assess the predicted interaction
networks. The reference data-set was generated by merging together the
structure-based domain interaction resources 3DID and iPfam (iPfam
version 21.0 and 3DID August 2005 version) (Finn et al., 2005; Stein
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Fig. 1. Venn diagram explaining the weighted overlap score Wo. Given two
domain interaction networks Ia and Ib, their shared domain space Dab defines
the number of potentially shared interactions, Ia→b and Ib→a, shown as cross-
hatched areas of the interaction networks. By calculating Wo as the networks’
intersection relative to Ia→b and Ib→a, the overlap becomes independent of
the network sizes.

et al., 2005). This combined network contains 4349 PDB-derived domain
interactions, of which 2064 are homo-domain interactions (self-interacting
domains).

2.5 Source network comparisons
An all versus all comparison was done for all predicted networks using
the weighted overlap score and domain-space similarity. The pairwise
Wo scores and shared domain-space fractions between all networks were
arranged into distance matrices that were used to generate UPGMA trees
for visualizing their relationships. The application Belvu was used for this
purpose (Sonnhammer and Hollich, 2005).

2.6 Accuracy score
An accuracy score was calculated for each source network, as the weighted
overlap score against the reference set made up of the combined 3DID and
iPfam networks.

2.7 Domain mapping
The networks chosen as sources to generate UniDomInt, were first converted
into Pfam-A if necessary. Two of the networks (P-value and HIMAP)
use different domain identifiers, SCOP and Interpro. The SCOP domains
were converted to Pfam using SGD (http://www.yeastgenome.org/) and the
Interpro domains were converted to Pfam using the match table from the
Interpro website (http://www.ebi.ac.uk/interpro/ISearch?mode=db&query=
H). Domains not available in Pfam release 23.0 (Finn et al., 2008) were
removed from the source networks. The number of interactions and domains
remaining in each network can be seen in Table 1.

2.8 Reliability score
Each interaction in UniDomInt receives a reliability score between 0 and 1.
This is calculated as the sum of the accuracy scores of the networks
containing the interaction, divided by the sum of the accuracy scores for
all source networks.

2.9 Generating UniDomInt
In this article, nine predicted networks were evaluated, and if a network was
divergent enough it was merged into the database UniDomInt. The networks
were merged one at a time, recording the sources and reliability score for
each interaction

Table 1. A summary of the networks used to create the UniDomInt database
after converting them to Pfam-A (release 23.0) and removing redundant
interactions. The table also contains the number of homo-domain (self)
interactions in each network.

No. of
interactions

No. of homo-domain
interactions

No. of
domains

DIMA 3783 259 2007
Interdom 2768 0 1405
RDFF 2475 90 630
ME 2391 758 1235
DPEA 1811 215 1025
LP 1213 191 728
RCDP 994 122 484
P-value 469 21 339
HIMAP 270 32 165
UniDomInt 13166 1158 3562
Reference set 4349 2064 2948
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Fig. 2. (A) Relationships between nine different domain-domain interaction networks, in terms of Weighted Overlap score Wo. (B) Network relatedness based
on shared domain space, where percentages between two networks were calculated as the number of overlapping domains divided by the size of the smaller
set. The trees were built using UPGMA in Belvu (Sonnhammer and Hollich, 2005).

2.10 Source networks
The source networks chosen for the UniDomInt database were obtained from
published articles. They are: Interdom, DPEA, P-value, RDFF, RCDP, ME,
DIMA, LP and HIMAP. All networks use Pfam domain identifiers except
P-value and HIMAP.

Interdom is a database of compiled domain–domain interactions that uses
an integrated approach to predict potential interactions. Interdom uses four
different sources, domain fusions, PPI, protein complexes and scientific
literature (Bader et al., 2003, Mack and Hehenberger, 2002; Marcotte et al.,
1999; Ng and Wong, 1999; Westbrook et al., 2002; Xenarios et al., 2000).
The genome fusion dataset was used from this network.

Domain pair exclusion analysis (DPEA) is a statistical approach that predicts
domain–domain interactions from incomplete interactomes from different
species. This is done by creating likelihood ratios using an expectation
maximization algorithm (Dempster et al., 1977; Riley et al., 2005).

P-value is a statistical method for predicting interactions between pairs
of SCOP super families. The P-value is a measure for the strength of the
evidence for the interaction (Nye et al., 2005). In P-value, interactions were
predicted between SCOP domains for yeast proteins.

RDFF uses a domain-based Random Decision Forest Framework to predict
domain interactions. This is done by using Pfam domains in the proteins
as features of proteins (Chen and Liu, 2005). Predictions were made from
Saccharomyces cerevisiae PPI data (Deng et al., 2002; Xenarios et al., 2000).

Relative Co-evolution of Domain Pairs (RCDP) is a method that studies
PPI in F1-ATPase, Sec23p/Sec24p, DNA directed RNA polymerase and
nuclear pore complexes (Jothi et al., 2006). The domains were analysed from
co-evolutionary perspective using both structures and sequences. The results
were used to predict domain–domain interactions from the yeast interactome.

ME uses a Bayesian approach to predict domain–domain interactions by
integrating gene ontology and protein interaction data from yeast, worm,
fruitfly and humans. This method was used to predict domain–domain
interactions in Helicobacter pylori (Lee et al., 2006).

Domain interaction map (DIMA) contains domain interactions predicted by
phylogenetic profiling or by the DPEA algorithm. All interactions available
from DIMA were used (Pagel et al., 2004, 2007).

Linear Programming (LP) method uses a generalized parsimonious
explanation (GPE) method for predicting domain interactions. LP looks for

the smallest set of domain interactions to explain all protein interactions in
a network (Guimarães and Przytycka, 2008; Guimarães et al., 2006).

HIMAP uses a semi-naïve Bayesian model to predict PPI by integrating
heterogeneous evidences. One of these is domain interactions, that were
derived by statistical analysis of domain pairs overrepresented in protein
interactions from the HPRD (http://www.hprd.org) database. Interpro was
used for domain mapping (Rhodes et al., 2005).

2.11 Cut-off values used for the networks
Due to the very different methods and data used for predicting domain
interactions in the different networks, it is difficult to compare stringency
across networks. Cut-off values used for the different source networks were
chosen by the publishers of the original data.

3 RESULTS AND DISCUSSION
The aim of this article is to create a unified and reliable resource
of predicted domain–domain interactions. For this purpose nine
domain interaction networks were evaluated in terms of overlap and
accuracy. Based on this analysis we defined a reliability score for
each interaction in the merged dataset.

3.1 Network similarities
To investigate the similarity between the nine networks, we used
a measure of overlap that compensates for the different domain
content in each network. This measure only considers interactions
between domains occurring in both networks being compared. The
results were used to build a tree of network relatedness (Fig. 2A).
The network that made the most divergent predictions was HIMAP,
followed by Interdom and RCDP. A similar tree was built based on
the level of shared domain space between the networks (Fig. 2B).
As in the interaction tree, HIMAP is an outlier. For the rest, the
trees are very different, i.e. there is generally no connection between
shared domain space and shared interactions. The moderate overlap
between the networks shows that each method is relatively unique.
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Table 2. Quality benchmark of domain–domain interaction networks

Accuracy (%) Precision (%)

ME 57.88 52.91
LP 31.84 19.87
DIMA 31.61 13.90
DPEA 29.57 12.09
RCDP 20.67 12.98
Interdom 20.10 11.85
HIMAP 16.67 11.11
P-value 12.61 9.38
RDFF 9.35 4.85

All databases that were merged into UniDomInt were compared pairwise against a
combined set of reference interactions from iPfam and 3DID. Accuracy is measured as
the weighted overlap Wo with this dataset. Precision is the fraction of iPfam or 3DID
interactions present in the network.

3.2 Network reliability
The quality of each network was assessed by comparison to the
structure-derived databases iPfam and 3DID, taken together. These
are commonly used as gold standards. The results are shown in
Table 2. The predictions made by ME were closest to the reference
datasets, with a precision of 52.91% and an accuracy of 57.88%
[precision = True Positives/(True Positives + False Positives)]. Each
network’s accuracy can be used as a token for its interactions’
reliability. The performance of the networks is dependent on the
data used in the predictions, especially so when comparing networks
predicted by similar approaches like DPEA and RDFF.

3.3 Network coordination and merging
To compare the different networks a common coordinate system
was necessary, and therefore all networks were converted to use
Pfam identifiers. This also made a merger between the networks
possible. Combining all accepted networks resulted in a merged
network of 13 166 interactions and 3562 unique domains, called
UniDomInt. This covers almost 35% of the available domain space
in Pfam-A release 23. The combined dataset of interactions was
visualized using Cytoscape (Shannon et al., 2003), see Figure 3.
Most interactions (∼89%) are part of a giant component that lacks
prominent sub-clusters.

3.4 Interacting domains
From the merged database the most interacting domains were
collected. Sixteen domains were connected with more than or equal
to one hundred domains (Table 3). The most connected domain was
PF00069, the protein kinase domain, that interacted with 480 other
domains. Looking through the literature we found that the human
‘kinome’, i.e. all kinases, comprises about 518 proteins (Manning
et al., 2002). This shows that the scale of the predicted kinase domain
interactions is plausible, especially considering that they are widely
used in modular signalling systems for regulating a wide range of
cellular processes.

3.5 Network accuracy
Each network’s accuracy in the previous benchmark was used as a
weighting factor when calculating the interaction reliability score in
UniDomInt. This reliability makes it possible to rank the interactions

Fig. 3. A visualization of the domain interaction network UniDomInt
presented in this article. The circles are domains and the lines are interactions
between them.

Table 3. All domains in the UniDomInt network that interact with one
hundred or more domains

Accession Connectivity Domain name

PF00069 480 Protein kinase domain
PF00076 289 RNA recognition motif
PF00400 221 WD domain, G-beta repeat
PF01423 195 LSM domain
PF00071 194 Ras family
PF00085 169 Thioredoxin
PF00271 158 Helicase conserved C-terminal domain
PF00096 148 Zinc finger, C2H2 type
PF00097 135 Zinc finger, C3HC4 type (RING finger)
PF00018 131 SH3 domain
PF00505 106 HMG (high mobility group) box
PF00515 106 Tetratricopeptide repeat
PF00013 105 KH domain
PF00382 102 Transcription factor TFIIB repeat
PF00270 100 DEAD/DEAH box helicase
PF00004 100 AAA domain

by confidence. To assess the quality of UniDomInt with this scoring
system, we evaluated it using the same iPfam/3DID benchmark as
above. The difference is that we can now rank order the interactions
by reliability score and display the results as a curve in a true/false
positive plot (Fig. 4). In order to give some perspective on the
accuracy of the predicted networks a random network of domain
interactions was generated using the domain space of UniDomInt.
A true/false positive curve was generated and can be seen at the
bottom of Figure 4. The random network performed very poorly
compared against all predicted networks. UniDomInt generally
showed improved precision compared to the source networks. The
UniDomInt curve grazes the true positive/false positive point of
the best source network, ME. Yet, thanks to its scoring system,
UniDomInt can be considerably more sensitive or specific than ME.
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Fig. 4. Quality assessment of domain interaction networks. As UniDomInt provides a score for each domain–domain interaction, a curve can be drawn for
it (light grey) based on hits in the reference dataset. The dots represent the performance of the networks used in generating UniDomInt. For comparison, the
performance of the high-confidence part of Domine is shown as a diamond. UniDomInt generally achieves higher coverage of true positives (precision) at
lower false positive rates than the underlying networks; the curve passes through the ME point. A random network of domain-interactions was generated using
UniDomInts domain space. This is shown as a dark grey curve is (almost at the x-axis). All methods predict domain interactions significantly better than the
random network.

3.6 Benchmark
For comparison a benchmark was done against another similar
published resource, Domine. Although we used more source
networks than Domine, we obtained in total 4615 fewer interactions.
The reason for this discrepancy is that we used the latest versions,
which in many cases have become smaller for example DIMA
and LP. This reduction appears to be due to a decrease in the
false positive rate. We benchmarked the true and false positive
rate for Domine’s high-confidence network (22.6% of the entire
dataset), using the same reference dataset as before. As can be seen
in Figure 4, our network outperforms Domine’s high-confidence
network. The reason for UniDomInts improved performance is likely
the use of a more elaborate scoring system, combined with use of
more and updated networks. Another difference is that UniDomInt
scores each interaction consistently, while Domine uses a rule-based
score with only three levels.

4 CONCLUSION
We present a new integrated domain–domain interaction network
called the Unified Domain Interaction (UniDomInt) dataset. The
advantage of UniDomInt is not only its high coverage, but also
that each interaction is assigned a reliability score. This makes it
possible for the user to choose the desired level of stringency. The
UniDomInt network showed an increased precision when using our
scoring system then the individual networks used to generate the

database. It also performed better when compared against another
similar resource Domine.

Using the approach that only shared domain space is useful
in comparison of networks, we developed the weighted overlap
score. This score was used to analyse the relationships between
nine predicted domain-domain interaction networks. The network
making the most unique predictions is HIMAP. We observed
moderate levels of redundancy between the networks’ interactions,
and even less between their domain spaces. This means that the total
domain space still increases in size for each new prediction method
being released. However, a core domain space is shared so that the
networks have a basis for comparison.
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