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ABSTRACT

When using conventional transmembrane topology
and signal peptide predictors, such as TMHMM and
SignalP, there is a substantial overlap between
these two types of predictions. Applying these
methods to five complete proteomes, we found
that 30–65% of all predicted signal peptides and
25–35% of all predicted transmembrane topologies
overlap. This impairs predictions of 5–10% of the
proteome, hence this is an important issue in
protein annotation.
To address this problem, we previously designed
a hidden Markov model, Phobius, that combines
transmembrane topology and signal peptide
predictions. The method makes an optimal choice
between transmembrane segments and signal pep-
tides, and also allows constrained and homology-
enriched predictions.
We here present a web interface (http://
phobius.cgb.ki.se and http://phobius.binf.ku.dk)
to access Phobius.

INTRODUCTION

Traditional transmembrane topology predictors often
predict signal peptides as transmembrane segments, and
vice versa signal peptide predictors often predict
N-terminal transmembrane segments as signal peptides.
This fact is often overlooked when testing prediction
methods, and is the main cause for very different test
results. A frequent advice how to circumvent the problem
of these cross-predictions is to remove predicted signal
peptides before predicting transmembrane proteins (1), or
to remove proteins with transmembrane segments when

predicting signal peptides (2). However, as the number of
errors due to cross predictions is roughly the same for the
two kinds of predictors (3), the gain will be as high as the
loss by such approaches.
To resolve the ambiguities we have, in a previous study,

designed a hidden Markov model, Phobius, containing
submodels for both signal peptides and transmembrane
segments (see Figure 1). We obtain better discrimination
by forcing the predictor to chose between the two types of
features. A benchmark (3) showed that false classifications
of signal peptides were reduced from TMHMM’s (4)
26 to 4% and false classifications of transmembrane
helices were reduced from SignalP 2.0’s (5) 19 to 8%.
An advantage is that the method even increased the high
accuracy of TMHMM in predicting pure transmembrane
topologies from 44.5 to 53.9% correctly predicted
topologies. Since this benchmark, a new version SignalP
3.0 (6) has been published. Its false positive rate on
transmembrane proteins is however as high as before.
On the same set of transmembrane proteins without signal
peptides used in the previous benchmark, SignalP 3.0
produces false predictions on 21% (52 of 247) of the test
sequences.
Here, we present an overlap analysis between signal

peptides predictions and transmembrane segment predic-
tions done by conventional predictors on five proteomes.
We also give a description of the Phobius web interface.

WHOLE PROTEOME OVERLAP ANALYSIS

To investigate how large a problem the overlap between
predictions between conventional signal peptide predic-
tors and transmembrane topology predictors are at
whole proteome level, we tried to annotate five different
proteomes using a combination of SignalP 3.0 (6) and
TMHMM 2.0 (4). The results are given in Table 1.
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We found that 5–10% of all the proteins have predicted
transmembrane segments that overlap predicted signal
peptides. Since only one of the methods can be correct,
this casts doubt on 30–65% of all predicted signal peptides
and 25–35% of all predicted transmembrane topologies.
Both predictions are roughly equally frequent in a
proteome, and their false positive rates are more or less
the same, hence we cannot tell which method is correct
based on SignalP and TMHMM predictions in these
cases. Phobius thus solves a problem that other signal
peptide predictors and transmembrane topology predic-
tors cannot handle.

DESCRIPTION OF WEB INTERFACE

The Phobius web server provides an easy and accurate
mean to predict signal peptides and transmembrane
topology from an amino acid sequence. The sequences
should be submitted in fasta format, preferably uploaded
as a file. The predictions are given either in ‘short’—single
line text output or ‘long’—UniProt feature table styled
output (see Figure 2).

All predictions made by the Phobius server can
optionally be accompanied by a posterior label (location)
probability plot. The posterior label probability is the
probability for a location (cytoplasm, non-cytoplasm,
membrane or signal peptide) of a residue given the whole
sequence (see Figure 2). Note that the posterior prob-
ability plot is not a prediction in itself. The pattern of the
plot might even deviate from the prediction, which would
be a sign of uncertainty in the prediction.

In ‘normal prediction’ mode as well as in the
‘constrained prediction’ mode described below, sequences
are decoded with the 1-best algorithm (7).

CONSTRAINED PREDICTION

The accuracy of the predictions can be greatly improved if
we can include information about the location of a part of
the sequence in a constrained prediction (8). Typically we
could have experimental data at hand from reporter
fusions (9), antibody experiments, or have knowledge of
the location due to functional requirements of a site (10).
The Phobius web server provides a service to let the user
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Figure 1. The Phobius model. The model comprise submodels for signal peptides, transmembrane helices, cytoplasmic loops and two different
submodels for non-cytoplasmic loops.

Table 1. Overlapping signal peptide and transmembrane segments in whole proteome predictions by conventional predictors

Overlap/TM predictions Overlap/SP predictions Overlap/All sequences

Human (CCDS) 30% (1113/3720) 32% (1113/3485) 7.6% (1113/14663)
C. elegans 34% (2587/7694) 41% (2587/6328) 9.6% (2587/26032)
S. cerevisiae 26% (377/1468) 48% (377/787) 5.6% (377/6680)
E. coli K12 26% (271/1039) 39% (271/698) 6.4% (271/4243)
B. subtilis 32% (358/1133) 63% (358/565) 8.7% (358/4105)

The proteomes of five different species were annotated with SignalP-NN 3.0 and TMHMM 2.0. Predictions were counted as overlapping if a part of
a potential signal peptide as predicted by SignalP also was predicted as a transmembrane helix by TMHMM. In such cases, at least one of the
prediction methods is wrong. The overlapping predictions are expressed as fractions of all predicted transmembrane proteins, all signal peptide
predictions and the number of sequences in the proteome. The SignalP-NN predictions were carried out using the optional 70 residue truncation and
the correct organism group, and were counted as predicted signal peptides if the D-score was over threshold. The proteomes of Caenorhabditis
elegans and cerevisiae and the consensus coding sequences of the human proteome were downloaded from Ensembl and the proteomes of Escherichia
coli K12 and Bacillus subtilis were downloaded from NCBI’s web site.
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ID   P32241|VIPR1_HUMAN
FT   SIGNAL        1     30
FT   REGION        1     11       N-REGION.
FT   REGION       12     23       H-REGION.
FT   REGION       24     30       C-REGION.
FT   TOPO_DOM     31    147       NON CYTOPLASMIC.
FT   TRANSMEM    148    167
FT   TOPO_DOM    168    178       CYTOPLASMIC.
FT   TRANSMEM    179    200
FT   TOPO_DOM    201    219       NON CYTOPLASMIC.
FT   TRANSMEM    220    243
FT   TOPO_DOM    244    254       CYTOPLASMIC.
FT   TRANSMEM    255    275
FT   TOPO_DOM    276    294       NON CYTOPLASMIC.
FT   TRANSMEM    295    319
FT   TOPO_DOM    320    338       CYTOPLASMIC.
FT   TRANSMEM    339    359
FT   TOPO_DOM    360    370       NON CYTOPLASMIC.
FT   TRANSMEM    371    391
FT   TOPO_DOM    392    457       CYTOPLASMIC.
//

Figure 2. Output from the Phobius web server. An optional posterior probability plot is included in the prediction result.
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specify such constraints for a prediction. The user
may specify that a residue resides in a cytoplasmic loop,
non-cytoplasmic loop or a transmembrane segment.
One can also specify that the N-terminal part of the
sequence is a signal peptide.
Here we maximize PðLabels,SequencejModelÞ

P(LabelsjConstraints). This is implemented by a modifica-
tion in the forward–backward (11) calculations; we
multiply the forward probability for a state with
the PðLabeljConstraintÞ in the constrained sequence
positions.
As the membrane, signal peptide or a cytoplasmic loop

states are uniquely identified by one single label in the
Phobius model (Figure 1), we set PðLabeljConstraintÞ
to 1 for the label corresponding to the constraint
and 0 for all other labels in the constrained position.
Non-cytoplasmic loops, on the other hand, can
have two different labels. Here we assign 0.5 probability
to each of the two constrained labels, and 0 to all other
labels.

PREDICTION WITH HOMOLOGS

Since homologous sequences are likely to share both
transmembrane topology and absence or presence of
signal peptides, we can gain extra support for a prediction
by examining the query sequence’s homologs. This is the
supporting idea for PolyPhobius, whose algorithm is
described in a separate paper (12).
Here the server BLASTs the query sequence against

UniProt. Hits with an E-value lower than 1E–5 covering
more than 75% of the sequence length are used as support
for the prediction. The full-length sequences are then
realigned using a multiple sequence alignment program,
and weighted with the Henikoff and Henikoff weighting
scheme (13).
When we measured the performance of the approach,

we found a significant increase in accuracy for transmem-
brane topology prediction accuracy (from 67.8 to 74.7%
correct topologies) and as well as improvement in signal
peptide prediction accuracy (increase in Matthews
correlation from 0.901 to 0.921) as compared to Phobius
without homology–enrichment (12).
The user can also submit his own alignment in Fasta

format. In this case, the transmembrane topology and
presence of signal peptide of the first sequence will be
predicted taking the other sequences in the alignment into
account.

IMPLEMENTATION

The Phobius web server is implemented as a
Perl CGI-script. Plots are produced by gnuplot. Normal
predictions are made with the ANHMM package
(our unpublished data), while constrained predictions

and predictions with homologs are done by
HomologHMM package (12). Multiple sequence align-
ments are produced with Kalign (14).

AVAILABILITY

The Phobius web server is available at http://phobius.cgb.
ki.se/ and http://phobius.binf.ku.dk/. Stand-alone
versions of the software for academic users for Linux
and SunOS are available on request.
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