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Distance-based methods are popular for reconstructing evolutionary trees of protein sequences, mainly because of their
speed and generality. A number of variants of the classical neighbor-joining (NJ) algorithm have been proposed, as well as
a number of methods to estimate protein distances. We here present a large-scale assessment of performance in recon-
structing the correct tree topology for the most popular algorithms. The programs BIONJ, FastME,Weighbor, and standard
NJ were run using 12 distance estimators, producing 48 tree-building/distance estimation method combinations. These
were evaluated on a test set based on real trees taken from 100 Pfam families. Each tree was used to generate multiple
sequence alignments with the ROSE program using three evolutionary models. The accuracy of each method was analyzed
as a function of both sequence divergence and location in the tree. We found that BIONJ produced the overall best results,
although the average accuracy differed little between the tree-building methods (normally less than 1%). A noticeable trend
was that FastME performed poorer than the rest on long branches. Weighbor was several orders of magnitude slower than
the other programs. Larger differences were observed when using different distance estimators. Protein-adapted Jukes-
Cantor and Kimura distance correction produced clearly poorer results than the other methods, even worse than uncor-
rected distances. We also assessed the recently developed Scoredist measure, which performed equally well as more
complex methods.

Introduction

The construction of phylogenetic trees has many appli-
cations in current biological research. It is a popular means
to address evolutionary questions in, e.g., taxonomy, pro-
tein function inference, and epidemiology. Reconstruction
of phylogenetic trees from the wealth of gene sequences has
attracted many researchers over the years and has given rise
to a large number of methods such as neighbor-joining (NJ),
maximum likelihood (ML), minimum evolution (ME),
and parsimony (see e.g., Nei 1996; Zhang and Nei 1997;
Whelan, Lio, and Goldman 2001).

ML is often considered the best approach. Here, each
tree topology is assigned a likelihood, summing over all
possible ancestral sequences (Felsenstein 1981; Kishino,
Miyata, and Hasegawa 1990). This is repeatedly carried
out for all tree topologies, and the tree with the highest like-
lihood is finally chosen. The major drawback of ML is its
poor scalability. Already with a small number of sequences,
it becomes unfeasible to examine every possible tree topol-
ogy. Therefore, the much faster distance-based methods
have gained popularity and are today most widely used.

The simplest distance-based method, unweighted pair-
group method using arithmetic averages (UPGMA), dates
back to 1958 in its earliest version (Sokal and Michener
1958; Sneath and Sokal 1973). This method simply joins
the two nodes with the shortest distance at each stage of
the clustering. The newly formed cluster is given a distance
to the remaining nodes calculated as arithmetic averages. A
drawback with this approach is that all distances from the
leaves to the root become the same. If the assumption of
a molecular clock holds, this approach delivers acceptable
topological results. However, UPGMA is known to yield

poor results when substitution rates vary and is not trusted
in general for phylogenetic tree construction.

The widely used NJ algorithm (Saitou and Nei 1987)
performs clustering in a similar fashion as UPGMA, but it
explicitly takes variable evolutionary rates into account.
Atteson (1997) showed that if the error of the distance esti-
mates is at most half the length of the shortest branch in the
underlying phylogeny, then NJ always returns the correct
tree. It has been shown that the topology of the NJ tree
is close to that of the ME tree (Saitou and Nei 1987; Saitou
and Imanishi 1989). Fast versions of NJ have been pub-
lished (Howe, Bateman, and Durbin 2002; Mailund
2003) in which heuristics are used to avoid unnecessary
recomputations.

BIONJ is a modification of NJ (Gascuel 1997) that
uses a simple model of the sampling noise (variance) of
evolutionary distances. During each step of the clustering
process, nodes are selected for joining so that the variance
of the new distance matrix is minimized. It thus takes into
account the fact that high distances present a higher vari-
ance than short ones.

Another modification of NJ is the Weighbor algorithm
or ‘‘weighted NJ’’ (Bruno, Socci, and Halpern 2000). Here,
the selection of nodes for joining is based on ‘‘additivity’’
and ‘‘positivity’’ properties, which are estimated using ML.
It is claimed to achieve tree accuracies comparable to ex-
haustive ML, yet at a much lower computational cost.

Besides NJ and its various modifications, other
attempts to fulfill the ME criterion have been taken by
Desper and Gascuel (2002). Their greedy minimum evolu-
tion algorithm is used to calculate a tree, which is further
improved by nearest neighbor interchange. The authors
presented unweighed and weighted versions of their ap-
proach, both implemented in their program FastME.

The starting point for all distance-based tree construc-
tion algorithms is the pairwise sequence distances. Several
methods to estimate these are available. Some methods
were originally formulated for DNA sequences but have
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been adapted to protein sequences, which are discussed in
this study.

In general, the various distance estimation methods
can be divided into two classes. In the first class, distance
between two sequences is measured by simply calculating
the percentage nonidentical sites. The distance is usually
found by applying some mathematical correction to com-
pensate for multiple substitutions (that cannot be observed
directly) to this value.

In this paper, we evaluated the methods Kimura (1983)
and uncorrected distance (percent differences) in this cate-
gory. The Jukes-Cantor (1969) estimator has originally
been formulated for DNA sequences. We used the
Jukes-Cantor–inspired model by Takezaki, Rzhetsky, and
Nei (1995) ðd5� ð19=20Þlnð1� ð20=19Þp̂Þ; where p̂ is
the estimate of the expected proportion [p] of sites that
is different between the two sequences) and refer to is as
Jukes-Cantor protein (JCP). We also tested a new method
called Scoredist that is based on a logarithmic correction
function applied to the alignment score according to the
BLOSUM62 (S. Henikoff and J. G. Henikoff 1992) matrix
(Sonnhammer and Hollich 2005). The principle is similar to
the Kimura correction but is based on alignment score in-
stead of percent identity. Scoredist needs to be calibrated
with an evolutionary model; throughout this paper, we used
the default Scoredist version which is calibrated using the
Dayhoff model and default indels in ROSE (calibration
factor 5 1.3370).

Distance measures belonging to the second class use
a series of amino acid substitution matrices. Here, the dis-
tance between two sequences is estimated as the evolution-
ary distance of the matrix that is optimal for their alignment.
The optimal matrix can be found either by an iterative
search for the ML matrix (Felsenstein 1989) or by integra-
tion to find the expected distance (EXP) (Agarwal and
States 1996). Several matrix series exist that have been de-
rived using different data and evolutionary models
(Dayhoff, Schwartz, and Orcutt 1978; Jones, Taylor, and
Thornton 1992; Müller and Vingron 2000; Whelan and
Goldman 2001).

When applying distance-based approaches, tree recon-
struction is conducted in two separate steps. First, pairwise
distances are estimated between all sequences. Tree build-
ing is then based on the obtained pairwise distances. Pre-
vious studies have been limited because they only
compared the performance of tree construction or distance
methods in isolation (Russo, Naoko, and Nei 1996; Desper
and Gascuel 2004). However, the best distance measure
with one-tree method may not be the optimal choice for an-
other tree algorithm. As real data always need to pass both
distance estimation and tree reconstruction steps, it makes
sense to evaluate the combined result of both steps. Another
limitation with previous comparative studies is that they
were done on only a handful of families.

In this paper, we present a large-scale evaluation of the
most commonly used approaches and examine their ability
to reconstruct the correct tree on a test set of 100 protein
families. The performance of all 48 combinations of 12 dis-
tance measures and four tree construction methods was
assessed. In order to further analyze the weaknesses and
strengths of the methods, we stratified the results according

to sequence divergence and distance from the tree leaves.
All these methods have previously only been compared to
a standard method (normally NJ) on small and different data
sets. With this study, we are able to compare the perfor-
mance of the different methods on the same data set, which
due to its size and origin allows us to draw generalizable
conclusions.

Methods

Standard NJ trees were constructed with Belvu 2.26.
BIONJ as published, FastME as of February 28, 2003, and
Weighbor 1.2.1 were used for the other methods. All meth-
ods were run with the default parameters suggested by the
respective authors.

Pairwise protein distances were estimated from the
alignment using lapd 1.0 (Arvestad 2004) for ML and
EXP and Belvu 2.26 for standard Scoredist with Dayhoff
calibration, JCP, Kimura, and uncorrected distance. For
EXP and ML distances, the Dayhoff (Dayhoff, Schwartz,
and Orcutt 1978), Jones-Taylor-Thornton (JTT) (Jones,
Taylor, and Thornton 1992), Whelan and Goldman
(WAG) (Whelan and Goldman 2001), and Müller-Vingron
(MV) (Müller and Vingron 2000) matrices were used. All
these methods ignore gaps.

The test set used to evaluate the tree construction and
distance estimation methods was produced by generating
multiple alignments from known trees. As the objective
was to draw conclusions applicable to real life, trees were
taken from the Pfam protein domain database (Bateman
et al. 2004). From over 7,000 families, 100 families were
selected with the requirement that they should contain 50–
100 sequences and range between 100 and 500 columns in
length. For the selected 100 families, guide trees for the
simulated evolution were generated with the standard NJ
algorithm as implemented in Belvu and uncorrected dis-
tance. An arbitrary member sequence was selected as root
sequence to seed the simulated evolution process. Simula-
tions are always a potential risk and can be questioned.
They are, however, the only approach that gives verified
tree/alignment combinations here, as the true tree for a given
multiple sequence alignment is not known.

Each guide tree accompanied by the chosen root se-
quence was provided to ROSE 1.2 (Stoye, Evers, and
Meyer 1998), which generated multiple alignments by sim-
ulated evolution. ROSE was run with three different evo-
lutionary models on each family. This was done to
investigate potential bias stemming from using a particular
evolutionary model. By default, ROSE uses the Dayhoff
transition probability matrix (Dayhoff, Schwartz, and
Orcutt 1978). We also used the matrix described byWhelan
and Goldman (2001). The third model was using the
Dayhoff matrix for substitutions but disallowing deletion
and insertion events (indels) by setting the indel probability
to zero. Default ROSE parameters for version 1.2 were used
for indel probabilities in the two data sets that allowed them,
setting the probability of insertion or deletion events to
0.01. The lengths of indels were chosen according to
a length function; here, also the default model was applied.
ROSE can also be configured to use site-specific mutation
rates, but this was not chosen in this study. For each model,
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ROSE was run in tree replicates. In total, 100 3 3 3 3 5
900 trees were generated for the test set. However, three
trees failed on some methods, giving an effective size of
297 3 3 5 891 trees.

To assess the accuracy of the various tree-building
methods and distance matrices, the reconstructed trees were
compared to the original guide trees that were used by
ROSE to generate the multiple sequence alignments. The
comparison was made by calculating a ‘‘topological close-
ness measure’’ between the trees. A well-established topo-
logical distance measure was described by Robinson and
Foulds (1981). A variant that is simpler to compute is avail-
able (Penny and Hendy 1985). The rationale is to consider
every tree branch as a bipartition to all leaves. Comparing
all bipartitions between two trees measures the topological
difference. According to the original definition, the number
of unmatched bipartitions is multiplied by 2 to yield the to-
pological distance. Thus, the Robinson-Foulds topological
distance between two bifurcating unrooted trees with
n leaves is in the interval 0 (for isomorphic trees) and
2(n � 3) (if all leaves are placed differently). Trivial bi-
partitions of only single leaves are not considered. The
Robinson-Foulds distance measure equals the necessary
number of elementary operations (merging and splitting
of nodes) to transform one tree into the other. The 297 used
guide trees in the data set contained a total of 19,374
nontrivial bipartitions.

For this study, the accuracy of tree reconstruction was
calculated as the inverse topological distance normalized to
a score in the interval [0, 100], where 100 was attributed to
identical trees and 0 for trees sharing no nontrivial biparti-
tion. This choice is motivated, as each tree should contrib-
ute equally to the final result. The topological distance
calculation makes no distinction between rooted and un-
rooted trees.

Results

A large-scale data set of multiple alignments corre-
sponding to 100 trees with known topology was generated
with the ROSE program. Simulation of multiple alignments
using a guide tree and a model for amino acid substitutions,
as in ROSE, is the only way to be absolutely sure about
the true tree. The trees with known topology were derived
from 100 medium-sized Pfam families. The pairwise iden-
tity among the sequences within one tree ranged between
99.7% and 26.1% with an average of 52.2%. They were
generated by the standard NJ method, but in principle it
does not matter how they were generated as the data
used to build the trees were discarded and not in any
way used for creating the test set alignments. This ensures
that the analysis is not circular. A potential drawback of the
simulation technique is that the generated sequences de-
pend on the parameters in the evolutionary model. We
therefore used three different models in ROSE to generate
sequences from the guide trees: Dayhoff, WAG, and
Dayhoff-nogap.

Figure 1 shows the overall result for each combination
of the four tree-building methods and the 12 distance mea-
sures on data generated with the Dayhoff matrix. The stan-
dard ‘‘classical’’ implementation of the NJ algorithm is

here carried out by Belvu (Sonnhammer 2005). BIONJ
and Weighbor are recent improvements to the standard
NJ algorithm, while FastME uses heuristics to find the
ME tree.

The best result was obtained with BIONJ/Scoredist,
while the worst result was produced by Weighbor/Kimura,
with a difference in accuracy (topological closeness to the
correct tree) of 4.5%. For a given distance measure, how-
ever, relatively small differences are observed in the accu-
racies of the four tree-building methods, generally less than
1% between the best method and the worst. This is expected
from a large test set based on real trees that contain many
‘‘easy’’ and many ‘‘hard’’ nodes. The easy nodes will be
found correctly by all methods, while the hard nodes will
be found at low rates by different methods, and these differ-
ences tend to even out for many trees.

A clear trend is that BIONJ and Weighbor are more
accurate than BelvuNJ and FastME. This is true for all dis-
tance measures except JCP and Kimura, where Weighbor
becomes less accurate. BIONJ is the champion of tree
building, winning with all distance measures except one
(JTT ML) where it is marginally surpassed by Weighbor.
On the other hand, Weighbor is mostly in second place only
marginally behind BIONJ. UPGMA, an early and relatively
primitive tree-building method, was also assessed on a sub-
set of this study. As expected, the results were poor com-
pared to those of BIONJ.

When comparing distance measures, the simple meth-
ods, uncorrected distance, JCP, and Kimura, were clearly
outperformed by Scoredist, ML, and EXP. However, these
distance measures give a fairly uniform impression. Scored-
ist reaches the highest accuracy for BIONJ and Weighbor,
but several other measures come very close. For BelvuNJ,
which is ‘‘standard NJ’’, Dayhoff ML was the best distance
measure. It is interesting to note that JCP and Kimura were
even inferior to uncorrected distance.

To investigate the results’ dependence on the evolu-
tionary model used in ROSE, we generated a test set from
the same trees using theWAG (Whelan and Goldman 2001)
transition probability matrix. Overall, the WAG results
were similar to the Dayhoff results, therefore figure 1B
shows the accuracy difference between WAG and Dayhoff
for each method combination. As expected, distance esti-
mation using the Dayhoff matrix was degraded on the
WAG data set. We expected the WAG-based distances
to improve correspondingly, but this was not the case ex-
cept with FastME. However, FastME seems somehow to
be heavily biased toward the WAG model as even the
Dayhoff-based distance estimation gave better results on
the WAG than on the Dayhoff test set. This increase
was only minor, and because it was below the average in-
crease for all methods it is shown with a negative value in
the figure. FastME thus seems more robust and compatible
with the WAG model than the other methods. The simple
correction-based distance measures were also more accu-
rate on WAG than on the Dayhoff data set.

We also investigated the dependence on the gap, or
‘‘indel’’, probabilities by generating a third version of the
data set with the Dayhoff matrix and zero probability for
indels, see figure 1C. In general, zero indel probabilities
(which results in gapless alignments) should give higher
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accuracies as more information can be used by the tree-
building program. This was indeed observed and accuracy
decreased by 1.27 on average when introducing indels.
Weighbor was the tree-building method that suffered
most from the model change. In fact, Weighbor was the
most degraded method for 11 of the 12 distance measures.
In contrast, FastME seems only lightly affected by the in-
troduction of indels and was the least degraded method in
9 of the 12 cases.

To gain better insight into how the algorithms’ perfor-
mance depends on the tree-topological circumstance, we
stratified the test set in two ways. Every branch was placed
in a category based on its length, or based on the average
distance between a branch and the leaves. The accuracy was
again measured as topological closeness to the correct tree
as described above. In principle, short branches should be
hard to reconstruct and ‘‘interior’’ branches should also be
more error prone.

The tree reconstruction accuracy was found to sharply
increase with larger branch lengths, see figure 2. The in-
crease was rather uniform for all tree-building methods us-

ing the Scoredist distance measure. However, for long
branches FastME performed relatively worse than other
algorithms. This was detected in all data sets (data not
shown). For shorter branches, FastME was equally good
as BIONJ and Weighbor; instead BelvuNJ performed
slightly worse than the others here.

When comparing distance measures in the same way,
a greater difference between methods was observed for
short and intermediate branch lengths. The previous obser-
vation that uncorrected distance, JCP, and Kimura are less
accurate than the rest is here more pronounced. It is of con-
cern that of these three, uncorrected distance is the most
accurate. The Scoredist method, although about as simple
to implement as JCP or Kimura, was about as accurate as
the more complex methods.

Figure 3 shows that tree accuracy also depended
strongly on the distance to the leaves. All the tree-
building methods (using Scoredist) were affected rather
uniformly. The picture for different distance measures
(using BIONJ) again showed that uncorrected distance,
JCP, and Kimura performed substantially worse than the
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FIG. 1.—Evaluation of tree-building and distance estimation method combinations. The average accuracy obtained by combining four tree-building
methods and 12 distance measures was evaluated on 100 trees of known topology. The accuracy was measured as topological closeness (seeMethods) to
the correct tree. For each model, 19,374 bipartitions were examined. (A) Data set generated with ROSE using the Dayhoff transition probability matrix.
(B) The relative change in accuracy when instead generating the test set with the WAG matrix. Each value is the accuracy on WAG subtracted by the
accuracy on Dayhoff �0.69, which was the average accuracy increase. This assigns positive values to methods that profited more than the average from
the model change. Negative values down to �0.69 are attributed to methods with only minor gains, and values below�0.69 are given to methods which
showed lower accuracy for the WAG model. (C) The relative change in accuracy contributed by indels in the data generation by ROSE with the Dayhoff
matrix. The plot shows differences between the Dayhoff and the Dayhoff-nogap data set. Each value is accuracy with default indel probabilities subtracted
by the accuracy with indel probabilities set to zero plus 1.27. The values are to be interpreted as in (B); however, the model change to indels gave an
average accuracy decrease. Accuracy was measured as the fraction of nontrivial bipartitions shared between the true tree and the reconstructed tree. The
evaluated distance estimators are uncorrected distance (UC), JCP, Kimura (Kim), Scoredist (SD), EXP, and ML distance. For EXP and ML distances, the
JTT, Dayhoff (Day), WAG, and MV matrices were used. For each distance estimator, the tree-building methods are given in the same order: BIONJ,
Weighbor, BelvuNJ, and FastME.
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other measures, uncorrected distance being the best of
the three.

So far, only the average accuracy for a method com-
bination over all families in the data set has been presented.
However, the individual accuracy of different families
varies between 35% and 80%. In order to analyze why some
trees are easy and some hard to reconstruct, we compared
the tree reconstruction accuracy to the variance in the re-
peated measurements of the same family, using the same
data set and method (fig. 4). The variances were averaged
for each family. There is a trend that high-accuracy trees
have lower variance, but it is weak and hardly discernible
up to 70% accuracy. However, the most accurate trees
(.70% accuracy) showed significantly less variance.

Another reason for the variation in accuracy between
families could be different levels of conservation. We
examined this effect by calculating each family’s average
conservation with Belvu. The conservation of a column
is the sum of all residue pair scores, according to
BLOSUM62, divided by the total number of pairs. The
average conservation of a family is the average over all

columns. The conservation average from the three align-
ments per family was taken and plotted against the average
accuracy for BIONJ/Scoredist (fig. 5). Plots for other meth-
ods than BIONJ/Scoredist had the same behavior (data not
shown). Accuracy and conservation proved to be highly
correlated, i.e., highly conserved families generally yield
more accurately estimated trees. This trend is much stronger
than the dependence of accuracy on the variance. Thus, in
order to predict the confidence of a tree reconstruction, the
main parameter is the level of conservation, while the var-
iance between multiple measurements is less informative.

Phylogenetic tree construction is frequently applied
to large data sets. Therefore, a suitable algorithm should
have low complexity and good scalability. In this study,
no tree contained more than 100 sequences. However, no-
table differences in runtime were already observed with
this amount of data, see figure 6. Of the four algorithms
evaluated in this study, Weighbor is by far the slowest.
This has also been recognized by other authors (Desper
and Gascuel 2002), who therefore did not use Weighbor
with more than 100 sequences. The remaining methods
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FIG. 2.—The ability to connect the correct tree branches was studied as a function of branch length (measured in PAM). (A) Comparing different tree
reconstruction algorithms, all using the Scoredist distance estimator. (B) Comparing different distance measures, all used by the BIONJ tree algorithm.
Shorter branch lengths were more difficult to reconstruct correctly for all methods, but some methods were degraded more than others. The number of
evaluated bipartitions is noted within brackets.
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did not differ much in computational speed. However,
FastME seemed faster than BIONJ, which has also been
noted before (Desper and Gascuel 2004).

The guide trees for simulation were calculated by NJ
from manually curated Pfam alignments. This raises the
question whether this is the reason why NJ-based algo-
rithms performed best in the study. To investigate this,
we also generated a data set using UPGMA guide trees from
the same Pfam alignments and made simulated multiple
alignments the same way as before. The result of this
was that although the UPGMA-reconstructed trees obtained
increased accuracy and NJ-reconstructed trees obtained de-
creased accuracy, the NJ trees were still superior. Using the

Dayhoff data model allowing for indels for simulation and
comparing BIONJ/Scoredist with UPGMA/Scoredist, the
accuracy was increased by 3.4% points for UPGMA and
decreased by 4.3% points for BIONJ. However, BIONJ
was still 3.5% points more accurate than UPGMA, thus
supporting the generality of the overall results in this study.

To allow researchers evaluating their own methods,
we have made our data publicly available at ftp://ftp.cgb.
ki.se/pub/data/treedist/dataset.tgz.

Discussion

This study is unique in two ways: it evaluates a large
number of distance-based tree-building methods on a large
test set. The quality of the distance estimates is not mea-
sured directly but only as the correctness of reconstructed
tree topologies. This is motivated by the fact that most users
are more interested in getting the topology of the tree
correct than the lengths of the branches.

The conclusion from the comparison of distance esti-
mation algorithms was that there is essentially no difference
between the ‘‘optimal matrix’’ methods and Scoredist, while
the old correction methods Kimura and JCP performed sig-
nificantly worse, even worse than uncorrected distance.

The conclusion from the comparison of tree-building
algorithms was that the enhancements to the original NJ
algorithm improve the accuracy to some extent, but rather
marginally, typically less than 1%. The measurement of im-
provement is of course dependent on the data set, but as this
was constructed from phylogenetic trees made from real
alignments the observed accuracies are realistic.

In terms of speed, all algorithms except Weighbor are
roughly equal. Weighbor was clocked about 200 times
slower than the rest, which reduces its usefulness. This high
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is a trend for lower variance in higher accuracy trees. Only five families
had a mean accuracy below 40% and were omitted.
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FIG. 6.—The tree construction algorithms show large variances in
time consumption. Times are noted as user time on our system. Weighbor
is by far slowest and may be used only for a limited number of sequences.
Among the other methods, BelvuNJ is fastest up to 300 sequences. For
a larger number of sequences, FastME takes the lead. Both of them are
always faster than BIONJ.
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time consumption does not seem to bemotivated asWeighbor
was generally less accurate than the much faster BIONJ.
Compared to other tree-building approaches, e.g., ML or
Bayesian statistics (Ronquist and Huelsenbeck 2003) that
do not employ pairwise distances, Weighbor is not a slow
method. Likelihood methods can still only be applied to
small data sets. Williams andMoret (2003) report that some
of these methods cannot handle alignments of 40 sequen-
ces, which was below the minimum sequence number in
this study. Likelihood methods have therefore not been in-
cluded here.

The authors of FastME have repeatedly claimed higher
accuracy of their method (Desper and Gascuel 2002, 2004).
Our findings did not confirm this observation and are in fact
more in line with results of Bruno (2004). Bruno reported
a long-branch attraction bias for FastME. This enables
FastME to successfully work on data with an underlying
molecular clock, but when this is violated FastME performs
worse, particularly on long branches.

Previous studies concluded that the quality of the un-
derlying multiple alignment may play a greater role for the
accuracy than the choice of tree reconstruction method
(Morrison and Ellis 1997). Because the multiple alignments
were obtained directly from ROSE, the correct multiple
alignment was always known in our study. As the multiple
alignments were not constructed by a multiple alignment
program, no particular bias to one method or the other
should be present.
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