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An inherent problem in transmembrane protein topology prediction and
signal peptide prediction is the high similarity between the hydrophobic
regions of a transmembrane helix and that of a signal peptide, leading to
cross-reaction between the two types of predictions. To improve predic-
tions further, it is therefore important to make a predictor that aims to dis-
criminate between the two classes. In addition, topology information can
be gained when successfully predicting a signal peptide leading a trans-
membrane protein since it dictates that the N terminus of the mature
protein must be on the non-cytoplasmic side of the membrane. Here, we
present Phobius, a combined transmembrane protein topology and signal
peptide predictor. The predictor is based on a hidden Markov model
(HMM) that models the different sequence regions of a signal peptide
and the different regions of a transmembrane protein in a series of inter-
connected states. Training was done on a newly assembled and curated
dataset. Compared to TMHMM and SignalP, errors coming from cross-
prediction between transmembrane segments and signal peptides were
reduced substantially by Phobius. False classifications of signal peptides
were reduced from 26.1% to 3.9% and false classifications of transmem-
brane helices were reduced from 19.0% to 7.7%. Phobius was applied to
the proteomes of Homo sapiens and Escherichia coli. Here we also noted a
drastic reduction of false classifications compared to TMHMM/SignalP,
suggesting that Phobius is well suited for whole-genome annotation of
signal peptides and transmembrane regions. The method is available at
http:/ /phobius.cgb.ki.se/ as well as at http://phobius.binf.ku.dk/
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discrimination by constructing a joint TM topology
and SP predictor.

Introduction

A well-known weakness of currently available
transmembrane (TM) helix predictors is the fre-
quent false classifications of signal peptides (SPs)
as TM helices.'* Conversely, SP predictors have a TM protein topology prediction is a classical pro-
tendency of falsely classifying TM helices as SPs.*"®  blem in bioinformatics. Since the structure of TM
These frequent false classifications are a conse-  proteins is difficult to determine by experimental

Predicting transmembrane protein topology

quence of the fact that both predictions are pri-
marily looking for a stretch of hydrophobic
residues as the main recognition pattern. It there-
fore seems natural to try to resolve this lack of

Abbreviations used: HMM, hidden Markov model;
TM, transmembrane; SPs, signal peptides.
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means, it has been a rewarding task to predict
their topologies computationally. It may seem easy
to recognize an a-helical TM segment since it
normally consists of a 15-30 amino acid residues
long region with an overrepresentation of hydro-
phobic residues. However, it is complicated by the
fact that many TM helices in multispanning TM
proteins are partially or completely shielded by
other TM helices. Since they are not entirely
exposed to the lipid bilayer they constitute
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amphipatic helices. Long stretches of hydrophobic
residues also exist in other types of protein
moieties, e.g., buried within globular domains or
in SPs, which could be falsely predicted as TM
helices. The task to make TM topology predictions,
i.e. to localize all TM segments as well as deter-
mine the location (inside the cytoplasm or outside)
of the loops turns out to be far from trivial.

Early TM helix prediction methods were based
on experimentally determined hydropathy indices
of hydrophobic properties for each amino acid.
For the examined protein, a hydropathy plot was
calculated by adding the hydropathy indexes over
a window with a fixed length. A heuristically
determined cut-off value was then used to indicate
possible TM segments.”® An important improve-
ment to this strategy was the observation that
there is an overrepresentation of positively charged
amino acid residues in the cytoplasmic loops of
TM proteins.” This gave a hint about the location
of the loops and led to the development of the
first automated full TM topology prediction
methods e.g. TOPPred.” The method first scans
the sequence for certain and putative TM segments
and then selects the most likely topology, including
none, some or all of the putative segments, based
on the charge of the loops. Instead of calculating
hydropathy plots there are methods letting a
sequence profile (DAS") or an Artificial Neural
Network (PHDhtm'?) detect potential TM
segments.

Instead of scanning the sequence for TM seg-
ments and then sorting out the topology as a
second step, the search for TM segments can be
integrated with the evaluation of possible topolo-
gies in one step. The amino acid distribution of
the investigated sequence is compared to precalcu-
lated expected amino acid distributions in each
type of topologically distinct region (TM helices
and cytoplasmic and non-cytoplasmic loops) of a
TM protein. Given the correlation measurements
between the amino acid distributions of the
examined protein and the expected amino acid
distributions in different topological regions, the
most likely topology can be predicted. A nice
feature of this approach is the ability to model all
parts of the protein so that all topogenic signals
are weighted properly, which is preferable to
giving priority to the hydrophobic signal. This
was first done by expectation maximization in the
method Memsat."® Probabilistic approaches to the
problem have been taken as well. A commonly
used probabilistic framework for such tasks is the
hidden Markov model (HMM)."* Some popular
HMM-based predictors are TMHMM""® and
HMMTOP?

B-Barrel TM proteins seem to be hard to predict
with the classical TM prediction methods since
their TM segments generally are shorter and with
a different amino acid composition than a-helical
TM segments. Lately some methods to predict
such structures have been published.'®'” We have
chosen not to include B-barrel TM proteins in this

study and we restrict our efforts to model a-helical
TM segments.

Predicting signal peptides

Similar to the TM segment, one of the strongest
indications of an SP is a hydrophobic a-helical
region. This is called the h-region of the SP. How-
ever, the hydrophobic region is generally shorter
for an SP (approximately 7—-15 residues) than for a
TM helix. The h-region is near the N-terminal of
the protein but it is preceded by a slight positively
charged n-region with high variability in length
(approximately 1-12 amino acid residues).
Between the h-region and the cleavage site, a
somewhat polar and uncharged 3-8 amino acid
residues long c-region is situated. Another clear
motif on the SP is the presence of small, neutral
residues at the —3 and —1 relative to the cleavage
site.'®”

Most available SP prediction methods use
weight matrices,” Artificial Neural Networks (e.g.
SignalP*), HMMs (e.g. SignalP-HMM?®) or Support
Vector Machines.”** An evaluation® showed that
the very popular method, SignalP V2.0.b2, is more
sensitive than the other methods, and predicts
cleavage sites more accurately, but includes many
false positive predictions.

Combined models

Alongside its SP model, SignalP-HMM?® uses a
model of a signal anchor, i.e. a TM protein with
one TM segment near the N-terminal of the pro-
tein, to help discriminate against false positives.
Similarly, LipoP** models N-terminal TM helices,
SPs and lipoprotein signal peptides in Gram-nega-
tive bacteria to improve discrimination between
these categories. However, as far as we know,
nobody has yet constructed a joint TM topology
and SP predictor.

An additional reason for including an SP model
when predicting TM topology is, apart from
improved SP/TM discrimination, that the presence
of an SP indicates that the N terminus of the
mature TM protein is on the non-cytoplasmic side
of the protein. In that case, the TM topology pre-
diction problem is reduced to finding the correct
TM helices, since the orientation of the protein is
given by the SP prediction.

Here we describe a new method, Phobius, based
on HMM, aiming to predict both TM topology of a
protein and the presence of an SP in the protein.
The choice of the HMM framework as prediction
technique is natural because it has successfully
been used for both prediction types separately,
and a combination of the model types is relatively
straightforward. The main strength of Phobius lies
in the ability to discriminate TM segments from
SPs. This makes it more accurate on mixed TM/
SP proteins than the best TM-only and SP-only
predictors. For SP-only proteins, it is more
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conservative than SignalP, i.e. has a lower false
positive rate but also a higher false negative rate.

Results

Model architecture

The model architecture of Phobius can be
regarded as a combination of the models made in
TMHMM and SignalP-HMM, with a transition
from the last state of the SP model in SignalP-
HMM to the outer loop state in the TMHMM
model. However, several modifications were made
to both models. Different combinations of these

(a)

modifications were then compared against each
other (data not shown). The final Phobius model,
which is the architecture with the best perform-
ance, is shown in Figure 1(a). In contrast to a
profile HMM,* where each state has its own indi-
vidual emission probability, we have tied the states
within the various parts of the model, i.e. emission
probabilities of tied states are identical. A run of
tied states in the model is referred to as a
compartment.

The TM helix submodel (Figure 1(b)) consists of
three compartments. A four-residue helix cyto-
plasmic end is followed by a 7-26 residue helix
core, which is followed by a four-residue helix
non-cytoplasmic end. TM segments can thus be
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Figure 1. The layout of the HMM model. States within grayed boxes have tied emission probabilities. (a) Overview
of the model. (b) The TM helix submodel. (c) The signal peptide submodel. (d) The cytoplasmic and short non-

cytoplasmic loop submodels.
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Table 1. Accuracy of transmembrane topology predictions by Phobius, TMHMM 2.0, HMMTOP 2.1, a combination of
SignalP-HMM and TMHMM, and a combination of SignalP-HMM and HMMTOP, measured for different data sets

Proteins contain Both-TM-and-SP TM-only SP-only Neither-TM-nor-SP
Test set sequences
New All New All All All

Phobius 94.1% 91.1% 53.9% 63.6% 96.1% 98.2%
TMHMM 2.0 70.6% 71.1% 44.5% 65.2% 73.9% 98.7%
HMMTOP 2.1 52.9% 51.1% 50.8% 66.8% 37.2% 85.0%
TMHMM-SignalP 88.2% 86.7% 39.5% 58.7% 98.0% 99.2%
HMMTOP-SignalP 88.2% 82.2% 45.0% 59.1% 89.6% 86.0%

A prediction was counted as correct when all the predicted TM helices overlap all the annotated TM helices of the protein over a
stretch of at least five residues and the location of the loops were correct. Incorrectness in predicting SPs was not regarded. For the
test sets not containing TM helices a correct TM topology prediction corresponds to a prediction that does not contain any TM seg-
ments. The New test set refers to the subset of proteins that excluded the TMHMM and the HMMTOP training data. All Phobius
measurements were cross-validated, while TMHMM and HMMTOP were not.

between 15 and 34 amino acid residues long in
total. The emission probabilities of all three
compartments are tied between the inward and
outward going parts of the model.

The SP submodel (Figure 1(c)) is split into n, h, c
and post-cleavage site regions. The n-region begins
with a methionine state followed by an n-compart-
ment. The n-compartment contains ten states,
where one of the states contains a self-transition,
enabling n-regions of arbitrary lengths with a
probability distribution tailing off exponentially.
The transitions are arranged such that the mini-
mum length of the n-region is two residues. The
h-region consists of a 6—20 residue compartment.
The c-region consists of a 12 state compartment
followed by six untied states. The transitions are
such that the length of the c-region can be any-
where between 4 and 18 residues. In contrast to
the SignalP-HMM model, no self-transition that
allows the c-region to be infinitely long is included
in the model, as no experimental evidence sup-
ports this. The post-cleavage site region consists of
four untied states. The region surrounding the
cleavage site thereby contains ten untied states,
making this part of the model similar to a weight
matrix.

The loop submodels (Figure 1(d)) consist first of

a 20 state compartment that allow any loop length
between 1 and 20 residues. For longer loops, a
self-looping globular state is connected between
states 10 and 11. There are three different loop
models: The cytoplasmic loop, the short non-
cytoplasmic loop and the long non-cytoplasmic
loop. The reason for having separate short and
long non-cytoplasmic loop compartments is that
long loops are likely to contain globular domains,
making the loops sufficiently different to warrant
separate treatment. One could imagine that
globular domains have to be transported across
the membrane by a special mechanism. It is hard
to say exactly the loop length at which the line has
to be drawn; we have defined it arbitrarily at 100
residues as in TMHMM.' Only using one non-
cytoplasmic loop model reduced the correct TM
predictions on the TM-only set (see below) from
63.6% to 61.5%. The long non-cytoplasmic loop
has a fixed zero-probability transition between the
incoming and the outgoing states, in order to force
the sequence to pass the globular state. The globu-
lar compartment of the long non-cytoplasmic loop
contains three states (not shown in Figure 1) with
tied self-transitions while the other loops only
contain one. The aim of this is to produce a length
model of the long non-cytoplasmic loop that

Table 2. Errors in signal peptide predictions made by Phobius and SignalP V2.0.2b

Proteins contain Both-TM-and-SP TM-only SP-only Neither-TM-nor-SP

Error type False negatives False positives False negatives False positives
Test set sequences All All New All All
Phobius 4.4% 7.7% 2.4% 3.5% 2.3%
SignalP-NN 2.2% 42.9% 2.2% 2.3% 4.8%
SignalP-HMM 0.0% 19.0% 0.6% 1.4% 4.0%

In the test sets containing signal peptides the values correspond to false negatives, while for the ones not containing signal peptides
the values correspond to false positives. The New test set sequences refers to measurements done on the test set where proteins poten-
tially used for training SignalP were removed, i.e. removing proteins added to SWISS-PROT before release 35. They were included
when training Phobius, but using cross-validation. There were no proteins containing both TM and SP that we could exclude from
being a part of the SignalP training data. Therefore no value is presented for the “Both-TM-and-SP” with “New” test set sequences.
The values in the SignalP-NN column were obtained when only taking in account the “mean S” score flag of the prediction, while
the values in the row SignalP-HMM were obtained by only taking in account the final SignalP-HMM prediction. SignalP was executed
with the kingdom-specific (i.e. eukaryote, Gram-positive bacteria or Gram-negative bacteria) version according to the annotation of
the test set. All Phobius measurements were cross-validated, while SignalP was not.
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Table 3. Number of correctly predicted signal peptide
cleavage sites with Phobius and SignalP V2.0.2b

Proteins contain SP-only

Test set sequences New All
Phobius 75.9% 73.4%
SignalP-NN 84.8% 81.9%
SignalP-HMM 81.8% 80.2%

The New test set sequences refers to measurements done on
the test set where proteins potentially used for training SignalP
were removed, i.e. removing proteins added to SWISS-PROT
before release 35. They were included when training Phobius,
but using cross-validation. All Phobius measurements were
cross-validated, while SignalP was not.

favors longer loops. Using only one globular state
reduced the correct TM predictions on the TM-only
set from 63.6% to 62.3%. The emission probabilities
of all globular compartment states in different loop
models were set identical.

Training was done without dividing the
sequences by kingdom, i.e. eukaryota, archea,
Gram-positive bacteria, and Gram-negative bac-
teria. We tried training by separate kingdoms, but
we found no performance increase in doing so
(data not shown).

Comparison with other methods

The performance of Phobius was measured by
tenfold cross-validation and compared to the
performance of TMHMM ver. 2.0' and HMMTOP
2.1 Tusnady9769220, reported in Table 1, and
SignalP V2.0.b2,% reported in Tables 2 and 3. The
test sets are described in Table 5. Because the
reference methods results were not cross-validated,
we also tested them using only data that had not
been used during their training (column New). In
the case of SignalP V2.0.b2, for which the explicit
training set is not available, this was done by
excluding sequences that had been reported in
SWISS-PROT? up to release 35, which is the
release that the training set of SignalP V2.0.b2 was
extracted from. The measurements on Phobius in
the New column were obtained by training on the
full cross-validation sets, but only testing against
the parts of the cross-validation sets not used in
the other methods’ training.

The comparison shows that Phobius is successful
in making fewer misclassifications of TM helices
as SPs and fewer misclassifications of SPs as TM
helices with respect to the compared methods.
On the other hand, Phobius is less sensitive when
predicting SPs and less accurate in predicting
cleavage sites than SignalP, but this is well com-
pensated for by the reduction of false positive pre-
dictions.

In most tests, Phobius was more accurate than
the other TM prediction methods. The exceptions
are on the Neither-TM-nor-SP dataset where
Phobius is marginally less accurate (0.5%) than
TMHMM, and on the complete TM-only dataset

(1.6%). Given the much lower accuracy of
TMHMM on the New part of the TM-only set, the
high value on the All set could be due to the over-
lap between the TMHMM training set and the test
set (i.e. lack of cross-validation). To investigate this
we retrained TMHMM on the All dataset and
measured the accuracy with tenfold cross-
validation. This resulted in a drop in accuracy of
2.9%, which makes it less accurate than Phobius.

The comparison also shows that HMMTOP per-
forms better than TMHMM on the TM-only data
set, but has clear problems when running on data
containing SPs or trying to sort out soluble
proteins.

A way to improve TM predictors that do not
handle SPs is to first remove any SP detected by a
separate SP predictor before running the TM
predictor."*® To investigate the behavior of such a
predictor, we removed SPs detected by SignalP-
HMM from our test sets and reran TMHMM and
HMMTOP. As can be seen in Table 2, this resulted
in a clear increase in performance on the datasets
containing SPs, but there was also a drop in
performance on the TM-only set.

All the investigated TM prediction methods
have a surprisingly low TM topology accuracy on
the TM-only dataset. It is even lower when
removing the original TMHMM training set. This
suggests that the training set of TMHMM is more
easily predicted than the other TM sequences.
This observation is well in line with a previously
drawn conclusion that the TMHMM  training
dataset is much easier to predict than genomic
datasets.”*

The much higher accuracy for the TM predictors
in the Both-TM-and-SP category should be read in
the light of the fact that it is a very small data set
containing only 45 sequences in the whole test set
and 17 sequences in the New part. The test set is
probably biased towards topologies that are easy
to predict. Thus, although the difference in
accuracy between Phobius and other methods
not taking SPs into account is undisputable, the
absolute level of accuracy is perhaps an
overestimate.

Our results indicate that SignalP-HMM is both
more sensitive and selective in detecting SPs than
SignalP-NN, but that SignalP-NN has higher
accuracy in predicting correct cleavage sites than
SignalP-HMM. A possible explanation for the low
accuracy of Phobius in predicting cleavage sites is
that we took all cleavage site annotations in
SWISS-PROT when we gathered the training data.
Given that the used discriminative training
procedure (see Materials and Methods) is rather
sensitive to bad training data, there is a risk that
incorrect cleavage sites, even if just a few, have
biased the model towards false sites.

Application to genomic data

Given the much lower rate of false classifications
produced by Phobius, it should be more reliable
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Table 4. Examination of difference in behavior of different prediction methods

Phobius Phobius TM Phobius SP SignalP- SignalP-

SP +T™M only only TMHMM HMM NN
A. The 26,309 sequences in the H. sapiens genome
Phobius TM and SP 1572 0 1441 1508 1499
Phobius TM only 0 4763 0 4050 785 1411
Phobius SP only 0 0 2630 479 2491 2280
TMHMM 1441 4050 479 6030 2525 3193
SignalP-HMM 1508 785 2491 2525 5614 4527
SignalP-NN 1499 1411 2280 3193 4527 5696
B. The 4289 sequences in the E. coli genome
Phobius TM and SP 143 0 0 139 104 130
Phobius TM only 0 811 0 762 203 482
Phobius SP only 0 0 599 128 505 542
TMHMM 139 762 128 1037 422 725
SignalP-HMM 104 203 505 422 841 786
SignalP-NN 130 482 542 725 786 1359

The values above represent the number of sequences in intersections between the sets of sequences containing predicted SPs and/or

TM segments by Phobius, TMHMM 2.0 and SignalP V2.0.2b.

than other methods for whole-genome annotation
of SP and TM-containing proteins. To investigate
this, we applied Phobius, SignalP and TMHMM to
the Homo sapiens® (26,309 proteins) and Escherichia
coli** (4289 proteins) genomes. The sizes of the
sequence sets predicted by the different methods
to contain SPs and/or TM segments are found on
the diagonal in Table 4. The sizes of the intersec-
tions between the sets are found off the diagonal
in the same Table.

In Table 4, we can see that Phobius found fewer
SPs than SignalP. The human genome was pre-
dicted to contain 4202 SPs by Phobius and 5614
SPs by SignalP-HMM. For E. coli, Phobius pre-
dicted 742 proteins with SPs while SignalP-HMM
predicted 841.

Phobius found more TM proteins than TMHMM
in the human data, 6335 versus 6030. In E. coli,
however, Phobius found fewer TM proteins than
TMHMM, 954 versus 1037. For the human proteins,
479 of the TM proteins predicted by TMHMM
were predicted to have only an SP by Phobius,
and it is likely that the majority of those are not
TM proteins, because TMHMM often confuses
SPs with TM helices (see Table 1). Ignoring these
leaves only 60 proteins predicted as TM proteins

Table 5. Test set composition

by TMHMM but not by Phobius. On the other
hand, Phobius predicted 844 TM proteins in
human that were not predicted by TMHMM.
We see a similar pattern for E.coli, for which
TMHMM predicted eight TM proteins not pre-
dicted by Phobius (if we assume that Phobius was
correct in predicting that 128 only contain an SP).
Phobius predicted 53 TM proteins that were not
predicted by TMHMM.

This behavior is consistent with the observation
that when disregarding the SP/TM confusion by
TMHMM, Phobius is less specific but more sensi-
tive than TMHMM. We believe that TM proteins
found by both methods have a very low error
rate indeed, and those predicted by TMHMM or
Phobius alone have higher error rates. To get an
indication of whether the 844 TM proteins pre-
dicted by Phobius alone are false positives, we
analyzed the proteins that were annotated by
SWISS-PROT and examined how many of them
contained the keyword “Transmembrane”. For
human, 99 of 234 (42%) SWISS-PROT entries con-
tained Transmembrane, compared to 15.4% for all
of SWISS-PROT. Although the Phobius unique set
appears enriched in true TM proteins some may
be false positives.

Both-TM-and-SP TM-only SP-only Neither-TM-nor-SP
Sequence similarity is measured over Whole sequence Whole sequence SP + 6 aa Whole sequence
Max sequence similarity
Within subsets 40% 80% 40% 40%
Between subsets 35% 30% 20% 20%
Number of sequences
Total 45 247 1275 1087
Eukaryotic 37 100 847 414
Prokaryotic 4 133 428 540
Other (viral or Archea) 4 14 0 133
After removal of TMHMM training data 17 128 - -
After removal of potential SignalP training data 0 - 494 -
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To assess the level at which TMHMM and
SignalP confuse SPs and TM helices, we looked at
how often they predict overlapping TM and SP
segments. Even though we do not know the true
answer for genomic datasets, such an overlap
means that one of them must be a false prediction.
If the predictions by TMHMM largely overlap the
predictions of SignalP, we can be sure that they
have a high false positive rate. In the human gen-
ome, Phobius predicted 1641 proteins containing
both an SP and one or more TM segments while
TMHMM + SignalP-HMM  predicted 2525. In
E. coli, Phobius predicted 143 while TMHMM +
SignalP-HMM predicted 422. For 1272 (50% of the
2525) sequences in the human genome and 415
(98% of the 422) sequences in E. coli there was an
overlap of at least one amino acid residue between
the SignalP-HMM-predicted SP and a TMHMM-
predicted TM segment. We therefore conclude that
the observation on the experimental test set holds
true for genomic predictions as well, namely that
TMHMM and SignalP have high false positive
rates on the “other” type of hydrophobic segment.
Phobius is forced to make a choice between these
types and therefore produces much fewer false
predictions.

Length distribution

Both TMHMM and SignalP-HMM are prone to
preferentially predict certain lengths of the hydro-
phobic region. In the case of TMHMM 2.0, this
results in a high representation of predictions with
23, 20 and 18 amino acid residues length of TM
segments as shown in Figure 2. It has also been
reported that SignalP-HMM favors certain lengths
of the h-regions of SPs (8 and 11 for eukaryotes, 9
and 12 for Gram-negatives, and 14 and 17 for
Gram-positives).”

Does this length preference stem from a bio-
logical preference of certain TM helix lengths, or is
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Figure 2. The length distribution of TM helices of the
122,564 sequences in SWISS-PROT release 41.0 as pre-
dicted by Phobius, TMHMM 2.0 and the annotation of
SWISS-PROT.

it an artifact caused by the training procedure of
TMHMM and SignalP-HMM? It is impossible to
define exactly where the boundaries of TM helices
are located, even when the crystal structure is
known. The length distribution obtained by
TMHMM is optimal for the model choice and
estimation procedure, but we do not believe that it
reflects a true biological phenomenon.

In order to obtain a smoother length distribution,
a modified training procedure was used when
training Phobius (see Materials and Methods). The
length distributions of all TM segments in SWISS-
PROT and predicted by Phobius and by TMHMM
2.0 are shown in Figure 2. The overrepresentation
of annotated TM segment lengths of 21 amino
acid residues in SWISS-PROT is probably due to
the frequent use of TOPPred as TM topology
predictor, since it sets TM segment length to 21 by
default.

Discussion

We have trained and tested a new prediction
method, Phobius, that predicts both transmem-
brane helices and SPs. In handling both types of
predictions at the same time it discriminates better
between SPs and TM helices. The method is based
on a HMM and works without any post processing
of the HMM decoding.

We have shown that Phobius is able to reduce
cross-prediction errors when analyzing the genome
of H.sapiens and E. coli and thereby giving more
accurate figures of TM protein and SP content.
We expect this improvement to extend to other
genomes as well.

The procedure for pretraining of length models
for the TM and SP regions contributes to prediction
accuracy. When testing a model without such pre-
training the correctly predicted TM topologies
decrease from 63.6% to 61.9% on the TM-only-set,
and the SP false positives increase from 3.5% to
3.8% on the SP-only-set. Although the performance
increase is relatively modest, we believe the
model produces results that are more biologically
realistic, because the length distribution is
smoother (see Figure 2).

Studies have been published on comparisons
between different TM prediction methods.**>**
Such comparisons generally turn out to be quite
dependent on the test set used; in particular they
are sensitive to fraction of proteins having an SP.
It is hard to construct an objective dataset. On top
of that, the accuracy values reported on the test
sets have recently been shown to severely over-
estimate the expected accuracy in a whole-genome
test,” so any performance figure from a benchmark
test should not be translated to an expected accu-
racy value when predicting genomic data.

A tempting extension of our method is to incor-
porate a submodel for mitochondrial targeting
peptides, chloroplast transit peptides, lipoprotein
signal peptides and/or other protein sorting
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signals in the model. Only very few of these sort-
ing signals are misclassified as SPs or TM helices,
but they could give a valuable contribution to TM
prediction by indicating the location of the loops
of the TM protein.

Materials and Methods

Data sets

We have collected and curated four different datasets:

e A set with TM proteins with SPs (Both-TM-and-
SP set)

e A set with TM proteins without SPs (TM-only set)

® A set with SPs and no TM helices (SP-only set)

o A set without SPs or TM helices (Neither-TM-nor-
SP set)

The sets containing TM helices originate from differ-
ent sources:

146 sequences from the TMHMM “160 dataset”'
140 sequences from TMPDB ver 6.2%°
2 sequences from the Moller dataset®

4 sequences of TM proteins with known 3D struc-
ture found in SWISS-PROT

The TM helix containing proteins were divided into
the Both-TM-and-SP and the TM-only sets based on
their annotation.

The SP-only set was collected from SWISS-PROT

9/10
relabeled
data

1/10

relabeling
model

test data

benchmark

Release 41.0/TrEMBL Release 23.0 employing the
Menne procedure® followed by removal of all putative
TM proteins based on their annotation.

Finally, the Neither-TM-nor-SP set was collected by
extracting sequences from SWISS-PROT 41.0 with a
known 3D structure that had no indication of an SP or
TM segment in their annotation.

Homology reduction was done in two steps that both
employed matches reported by BLAST processed by
MSPcrunch® 2.0 with the option zero coverage rejection.
To assure that the sequence identity was not too high
between the sequences a “Hobohm algorithm 2 redun-
dancy reduction””® was performed using BLAST
sequence identity cut-offs according to Table 5. The
resulting sets were sorted into ten cross-validation
subsets, so that the identity between the subsets was
kept below the cut-offs in Table 5. The cut-offs were
for practical reasons different for different datasets,
but we never allowed more than 80% identity within
a subset or more than 35% between subsets. The cut-
offs and sizes of the different data sets are shown in
Table 5.

To enable supervised training and relevant testing,
each amino acid in the data sets was labelled as cyto-
plasmic (i), non-cytoplasmic (o), long looped non-cyto-
plasmic (O), or SP cleavage site (C) according to the
annotation of protein or n-region (n), h-region (h), or
c-region (c) of an SP using a SignalP-HMM based model.

HMM training

The training procedure for the HMM model was
based on the procedure used for training TMHMM 2.0."

training

step
9/10

training

data
1/10

flow of 9/10 of
training data

flow of 1/10 of
training data

model flow

model

Figure 3. Graphical representation of the training of each of the ten cross-validation models. The third to the fifth
training step are depending on that the other nine models are trained in parallel, and thus delivering relabelled data

to the training of the tenth model.
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However, the training was modified to overcome the
described problem with an extreme bias towards certain
TM helix and SP region lengths. The training procedure
includes five steps and is graphically illustrated in
Figure 3.

To test the accuracy of Phobius, tenfold cross-vali-
dation was used, i.e. training was performed on nine of
the ten training data subsets while the remaining subset
was used for testing. The subsets were then rotated so
that in total ten models were trained and tested on the
take-out set. This avoids any testing on sequences that
were used during training.

In the first step, only the transition probabilities of the
states in the TM segments and the n-, h- and c-regions
were estimated. The distribution of TM segment lengths
was fitted to a gamma probability distribution while the
different SP regions length distributions were fitted to
normal probability distributions. This was done by maxi-
mum likelihood estimation of the parameters in the dis-
tributions with respect to the measured lengths in the
training data. Since the gamma and the normal distri-
butions are continuous functions rather than discrete,
the transition probabilities were assigned to the states
based on integration of the estimated distributions.
In the case of the TM helix the transition probabilities
were frozen during the next steps, while the calculated
probabilities were used as priors for the SP regions.
All other transition probabilities as well as all emission
probabilities are unaffected by this step.

The second step aims to correct imperfections in the
annotation of the extent of TM helices and SP regions in
the data sets. Three amino acid residues in both direc-
tions from a border between a loop and a TM helix
were “unlabelled”” in the training data. The same unla-
belling was also done for the n, h and c-regions of SPs,
but keeping the cleavage site intact. Then the model
from the first step was trained with a noise injected
Baum-Welch iterative procedure."” The output model
from this training step (called “relabelling model” in
Figure 3) was then used to relabel the training data for
the subsequent steps. In the relabelling procedure a free-
dom of five amino acid residues was allowed in each
direction between a loop and a TM helix and full flexi-
bility in assigning the compartments of the SPs. The
“relabelling model” was trained on nine of the ten train-
ing data subsets and the “relabelling model” relabelled
the remaining subset.

The third step was identical with the first except that
the relabelled training set was used.

In the fourth step a normal Baum-Welch procedure
was used to train the model from the third step with the
relabelled training set as input, i.e. the rest of the tran-
sition probabilities and the emission probabilities were
assigned. This was mainly done to help the discrimina-
tive training in the next step to converge.

In the fifth step the model parameters were updated
by discriminative training using conditional maximum
likelihood."*** The training maximized the probability of
correct labelling rather than maximizing the probability
of the observed sequences, as in the previous steps. To
reduce the dominance of the much larger sets containing
no TM helices, only one cross-validation subset of the
SP-only and none of the Neither-TM-nor-SP subsets are
used for training during this step.

After performance figures for the resulting ten models
were measured, the third to fifth stage were redone
with all the ten subsets as training data (without cross-
validation) so that a single model was obtained.

HMM prediction

The 1-best algorithm®***° operating on the Phobius
model was used to perform the predictions as it is con-
sidered the most suitable decoder for models trained by
a conditional maximum likelihood proceduref.
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