JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 11, Number 1, 2004

© Mary Ann Liebert, Inc.

Pp. 181-193

Transition Priors for Protein Hidden Markov Models:
An Empirical Study towards Maximum
Discrimination

MARKUS WISTRAND and ERIK L.L. SONNHAMMER

ABSTRACT

Insertions and deletions in a profile hidden Markov model (HMM) are modeled by transition
probabilities between insert, delete and match states. These are estimated by combining
observed data and prior probabilities. The transition prior probabilities can be defined
either ad hoc or by maximum likelihood (ML) estimation. We show that the choice of
transition prior greatly affects the HMM’s ability to discriminate between true and false hits.
HMM discrimination was measured using the HMMER 2.2 package applied to 373 families
from Pfam. We measured the discrimination between true members and noise sequences
employing various ML transition priors and also systematically scanned the parameter space
of ad hoc transition priors. Our results indicate that ML priors produce far from optimal
discrimination, and we present an empirically derived prior that considerably decreases
the number of misclassifications compared to ML. Most of the difference stems from the
probabilities for exiting a delete state. The ML prior, which is unaware of noise sequences,
estimates a delete-to-delete probability that is relatively high and does not penalize noise
sequences enough for optimal discrimination.

Key words: hidden Markov model, transition prior probabilities, maximum discrimination,
maximum likelihood, protein classification.

INTRODUCTION

ETHODS USED TO PREDICT THE RELATIONSHIP between new protein sequences and sequences of
known structure or function can be divided into two large categories: those that are based on pair-

wise sequence comparisons and those that use shared features from many related sequences. The general
challenge for all these methods is to combine high sensitivity with high specificity, i.e., to discriminate be-
tween true members and noise. Profile hidden Markov models (profile HMMs) (Krogh et al., 1994; Hughey
et al., 1996; Eddy, 1998) use shared characteristics from several training sequences and have been reported
to perform better than pairwise methods (Karplus et al., 1998; Park et al., 1998; Gough et al., 2001).
A profile HMM can either be trained from unaligned sequences in an optimization procedure or built
from a trusted multiple alignment in a much simpler way. Here we use profile HMMs (for simplicity, we
often simply say “HMMSs”) built from prealigned sequences. Once built, the HMM can be used to search
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for new family members in a sequence database or to score the probability of any single sequence being
a member of the family. The family membership annotation can then be inferred to sequences that score
better than a given threshold. Several databases of protein families with an HMM associated with each
family exist today (Schultz et al., 1998; Gough et al., 2001; Haft et al., 2001). One of those is Pfam
(Bateman et al., 2002) in which profile HMMs are built and searched using the HMMER package (Eddy,
2001), which we have used for this study.

In HMMER 2.2, a profile HMM has a basic topology of three states (match, insert, and delete) connected
by seven transitions (Fig. 1). There is a probability associated with each transition, as well as with the
emission of any of the 20 amino acids, being in a match or insert state. A path through the model is a
series of states leading from the Begin to the End state. Aligning a sequence with respect to the HMM
corresponds to finding the most probable path through the model that emits the sequence. This is normally
done using dynamic programming. The likelihood of the path provides a score that can be used for deciding
if the sequence is a family member. In HMMER, extreme value statistics is further used to estimate the
statistical significance of a score found during a database search.

Building the HMM involves estimating all probabilities in the model. This estimation process basically
corresponds to estimating posterior probabilities by combining prior probabilities and count events from
the columns of the multiple alignment. Using prior probabilities is a way to restrict the effective freedom
of model parameters, in case training data does not contain enough information to be fully reliable. For
instance, if few training sequences are available, there is a relatively high risk that they are not good
representatives of the underlying family. An HMM built from such sequences would be overfitted to
training data; that is, it would model training sequences well but perform poorly for detecting related
homologues. If we have prior knowledge about what the model should look like, we can take this into
account when estimating model parameters. Sjolander et al. (1996) exemplify this with the case of having
an alignment of three sequences where all three happen to have an isoleucine at a certain position. Rather
than be confident, saying that the probability of observing an isoleucine at this position is 1, we would
like to have a procedure for assigning probabilities for observing other amino acids given the observation.
Another example is when we observe only transitions from match to match state in the alignment. What
probability would we then assign to a transition from match to delete state or from delete to delete state?
Both in the case of transitions between states and in the case of amino acid emissions, we clearly need to
add prior knowledge to the count events. The relative importance of the prior should diminish when the
number of training sequences increases. Different approaches have been developed to deal with emission
prior probabilities (Brown et al., 1993; Tatusov et al., 1994; Karplus et al., 1995; Sjolander et al., 1996) as
well as the related problem of sequence weighting to avoid biases in the training sequences (Gerstein et al.,
1994; Henikoff et al., 1994; Eddy et al., 1995; Krogh et al., 1995; Karchin et al., 1998). The common
idea behind the most popular prior methods has been to capture the underlying distribution behind the
observed vector, using either Dirichlet mixtures or substitution matrices.

Benchmarking of methods for detection of remote homology has most often focused on discrimination
between members of different protein families (Henikoff ez al., 1996; Karplus et al., 1998; Lindahl et al.,
2000; Madera et al., 2002). This takes the tradeoff between sensitivity (avoiding false negatives) and
specificity (avoiding false positives) into account. Tightening the model to reduce the number of false
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FIG. 1. Overview of the plan 7 architecture of HMMER 2.2. D stands for delete state, M for match state, and I for
insert state. Arrows indicate the allowed transitions between states.
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positives detected, i.e., increasing the specificity, generally decreases the model’s sensitivity and vice versa.
The goal is therefore to find an optimal balance that maximizes the discrimination between members of
different families. However, when using sequence-based protein families, there is a risk that members of
different families are distantly related; yet this may not be obvious from the sequence. In such cases, a
lack of discrimination is actually biologically correct and might be a good property of the HMM. One
can avoid this problem by using only proteins with a known 3D structure, but that both limits and biases
the examples. To get a richer and more representative dataset, one can use, for instance, Pfam, but then it
makes more sense to measure discrimination against sequences that are guaranteed to be unrelated, e.g.,
reversed real sequences.

The discriminatory power of an HMM will depend on the procedure for combining observations and
priors into posterior probabilities. In this paper, we have focused on how transition priors influence the
discrimination performance of HMMs. Little work has previously been done on transition priors. We have
here changed each parameter in the transition prior systematically to explore the parameter space and mea-
sured the resulting discrimination using Pfam as test data. This allowed us to test whether transition priors
estimated by maximum likelihood discriminate optimally. The results indicate that maximum likelihood
transition priors discriminate poorly. Given that they were estimated entirely without taking specificity into
account, this is not surprising. From our scanning experiments, we empirically extracted a transition prior
that consistently optimized discrimination and recommend this prior to be employed for general HMM
database searching.

Prior probability distributions

Prior knowledge can be provided in many different ways (Durbin et al., 1998). One way is to add extra
counts, pseudocounts, to the observed data counts. The pseudocounts can be added in proportion to our
belief of how likely one event is compared to another, e.g., how likely a match — match transition is
compared to a match — delete transition (see Fig. 1). In HMMER 2.2, the default choice for transition prior
probabilities is to use Dirichlet densities, which can be seen as an advanced way of adding pseudocounts.
A Dirichlet density is a multinomial distribution over probability vectors (for HMMs, probability vectors
of transitions between states).

Generally, a Dirichlet density p over probability vectors of k parameters p = (p1, ..., px) is defined
by k parameters @ = (a7, ..., o) as

k
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It can be shown that the mean of a Dirichlet density is equal to the normalized mean of its parameters,
i.e.,
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and that the variance of the density is inversely proportional to the sum of its parameters ) _; ;. The ratio
between «-values can therefore be seen as a measure of the bias of the prior probabilities for one event
compared to another, and a high sum of «-values indicates a high belief in the prior.

In this paper, we will consider how to optimally set the transition prior probabilities in HMMER 2.2.
There are three “types” of transitions in HMMER 2.2: from a match state, from a delete state, and from
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an insert state; and an independent Dirichlet density models each of those. In all, the transition prior
probabilities are thus characterized by seven «-values: amm, amp, oM for transitions from match state,
aqr, apv for transitions from insert state, and app, apm for transitions from delete state. For instance, the
Dirichlet density for the match state transition prior is a probability distribution over probability vectors
for transitions from the match state:
amm—1 ami—1 amm—1
Pvm  Pmi Pmp 4
. “4)
Z (oMM, OMI, “MD)

p(PMM> PMI> PMD) =

It has a mean (pmMm, pPMmD, PM1) = (MM, OMD, am1)/ (@vmm + oMb + omr), and the higher the sum amm +
amp + ami, the more peaked it is around this mean.

How does HMMER 2.2 get from the Dirichlet prior and observed counts to the probability parameters
in the HMM? This is done by first combining the prior distribution and the counts using Bayes’ theorem
to form the posterior probability distribution and then taking the integral of this, called the posterior mean
estimate. The derivation of the resulting equation actually implemented in HMMER 2.2 is beyond the
scope of this paper, but details can be found elsewhere (see Durbin et al., 1998; Sjolander et al., 1996).
Here, we present only the resulting equation (Equation 5, the second equality is nontrivial) which reveals
a nice feature of Dirichlet priors: the o-values characterizing the prior can be regarded as pseudocounts
when estimating the posterior probabilities of transitions used in the HMM.

nij +aij

fij = ﬁ P(t;j|7) - P(Tla, n)dt = )
! ik + Ak

k

Here, f; j is the posterior mean estimate of the transition probability from state i to j, P(f jl?) is the
probability of transition #;; given the probability distribution of transitions 7, P(7|a, n) is the posterior
probability of the distribution 7 given the observed transitions 7 and the Dirichlet density o. Further, o;; is
the prior transition probability between the states i and j, and n;; are the observed transitions between these
states. The sum is over all possible transitions from state i. The estimate interpolates smoothly between
prior probabilities and observed counts. If no counts are available, the estimated transition probability 7; j
is entirely specified by the prior as the ratio between the «;; and the sum of all «’s. When much data is
available, the estimate will instead be almost entirely determined by the counts. The sum over a-values
determines the relative importance of the prior in comparison to the observed data, i.e., how much data is
needed to change our prior belief.

Estimating the transition prior

The prior probabilities themselves have to be estimated. One approach is to use maximum likelihood
(ML), i.e., to find the parameters «1, ..., o that optimally fit the Dirichlet distribution to observed count
events from a large set of data. The ML approach has been explored for estimating emission prior proba-
bilities using count vectors of amino acids from trusted multiple alignments (Sjolander et al., 1996), and
it has been argued that transition prior probabilities can be treated analogously (Durbin et al., 1998; Baldi
et al., 1998). This would incorporate our prior knowledge of how likely a deletion, for instance, is in a
multiple alignment of a sequence family and thus its cost when searching for homologous sequences. The
disadvantage of such an approach is that most often we are not interested in scoring true hits as high as
possible but rather in maximizing the discrimination between true members and noise sequences.

An alternative approach to estimate transition prior probabilities is to empirically observe which prior
parameters reliably produce optimal discrimination. This is a less theoretical approach to prior estimation
than the maximum likelihood approach, but seems currently to be the only way to optimize discrimination.

METHODS AND DATA

The basic benchmark strategy we used to compare different settings of the transition prior was to
construct sets of training sequences accompanied by remote homologues used as test sequences. For a
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FIG. 2. Distribution of number of training sequences in Group A (black bars) and Group B (white bars).

specific choice of transition prior parameters, HMMs were built from the training sequences, and the test
was to detect the test sequences buried in a huge number of noise sequences of about the same length.

For this, we used data from the 3,360 seed alignments in Pfam 7.0. Training and test sets were constructed
in the following way for all families in the database:

® All sequences of length < 70% of the family mean length were discarded.

® Each family was partitioned into subclusters such that no sequences in different clusters had > 20%
sequence identity.

® Families ending up with only one cluster were discarded.

® For the remaining families, the sequences in the largest cluster were chosen as training sequences. For a
few families, sequences in one or more of the remaining clusters were added to the training sequences
so that the training sequences always made up at least 50% of the total number of sequences. All other
clusters were merged into the set of test sequences.

® To avoid redundancy among the test sequences, sequences were discarded until there were no two test
sequences with > 80% sequence identity.

After this procedure, 373 families were left. These were divided into group A and group B with 187
and 186 families, respectively, and all the following experiments were done in parallel on both groups.
By comparing the result for the two groups we reduce the risk for overfitting to data. The distributions of
training and test sequences are shown in Figs. 2 and 3. The mean and median number of training sequences
per family were 35.0 and 17 in group A and 32.3 and 15 in group B, while the mean and median number
of test sequences per family were 3.7 and 2 in both groups.
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FIG. 3. Distribution of number of test sequences in Group A (black bars) and Group B (white bars).
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In Pfam it is not straightforward to define negative examples, because distantly related homologues may
be found in different families. We therefore believe that the best solution for Pfam is to employ reversed
real sequences as negative examples. These are, for sure, not family members and should, overall, have a
realistic amino acid composition. Noise files were constructed by selecting fragments of appropriate length
randomly from SWISS-PROT and reversing them C to N. In each file, all noise sequences were of the
same length, from noise100 (100 amino acids) to noise1000 in increments of 100. Each file contained
5,000 noise sequences except for noise1000 where there were only 2,874 sequences. Each family was
associated with the noise file with the smallest sequence length above the median length of the family’s
test sequences.

The benchmark strategy was the following. For each transition prior, HMMs were built from the training
sets (i.e., 187 HMMs for group A and 186 HMMs for group B). All other HMM building parameters were
kept as default, which means that the models were configured for searches that are global with respect to
the HMM and local with respect to the sequence. All test sequences, as well as the noise sequences, were
then aligned to the corresponding HMMs and ranked in a list from best to worst based on the raw log-odds
score. A cutoff score was chosen for each family so as to get the minimum error rate (MER) defined
as the minimum number of false positives plus false negatives. For instance, if there are two positive
test sequences corresponding to a certain family and the rank list of the five highest scoring sequences
are member, false, member, false, false, the cutoff score would be set to the score of the second highest
scoring positive sequence. This gives an MER score of one (one false positive, no false negatives), which
is optimal given the rank list. The number of test sequences for a family sets an upper limit to the MER.
A family with many test sequences can therefore contribute with a much higher MER than a family with
few test sequences. We noted that this could introduce an undesired bias to our benchmark, as the test
sequences for a certain family often are relatively similar. Therefore, we divide the MER with the number
of test sequences, which gives a value between 0 and 1. Summing these values for all families in the group
gave us the minimum error rate sum (MERS) for a specific prior. The MERS is a global measure of the
discriminatory power of the specific transition prior employed, and we like it to be minimized.

Prior information was changed systematically in three sets of runs, one for each of the three Dirichlet
densities of the transition prior, and the MERS was calculated for each prior setting. In the M-runs, ami
and ap were changed; in the I-runs, oqp and oy were changed; and in the D-runs, app and apy were
changed. All parameters not changed in one particular set of runs were kept at their default values, as were
all other settings in HMMER 2.2. Parameter amm is arguably the prior parameter with the least importance
as the match — match transition is by far the most common transition observed in the alignments; hence,
this parameter was never changed.

The ratio between a-values will determine their relative importance, and the sum of «a-values will
determine the importance of the prior in comparison to observed counts (see Equation 5 and earlier
discussion). For the two a-values changed in each set of runs, we therefore varied the ratio between them
and their sum, and for each setting of parameters, the MERS value was computed. This gave us a matrix,
showing MERS-values as a function of the ratio and the sum of the «-values changed.

Prior estimation from maximum-likelihood

We used data from the seed alignments in Pfam 7.2 to perform a maximum-likelihood estimate of
each of the Dirichlet densities specifying the transition prior; i.e., we sought the parameters that optimize
the probability of the observed transitions in the alignments. This is equivalent to finding the parameters
a@ = (ap, ..., ag) that minimize the negative log likelihood (NLL) of the observed data, i.e.,

m
f@ = -y log PGila. lii])
t=1

(6)
= X togPaulan3)+ Y logPulan2)+ Y. log P(nilar,2)

t=mm,mi,md t=im,ii t=dm,dd

where 7 is a count vector, |7| is the number of observed transitions in the count vector, and m is the number
of count vectors. Here, Sjolander et al. (1996) is also an essential reference for the implementation. Specific
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FIG. 4. Discrimination as a function of app and apv keeping all other «-values at default values. White is the
best region (lowest number of errors), and the asterisk indicates the ML prior.

for the transition prior is that we are estimating three distributions (match state, delete state, and insert
state) rather than one (e.g., emission distribution).

HMMER 2.2 provides the possibility of saving count vectors from model building, which we did for all
alignments without using any weighting scheme. In all, this produced about 858,000 count vectors. The
minimum of the objective function was estimated using a conjugate gradient descent algorithm starting
with initial values picked at random. To compensate for the risk of getting trapped in local minima, we
reran the optimization several times. Each time, the algorithm reproduced the ratio between individual
parameters, while the sum of the parameters varied in a narrow range.

RESULTS

The exploration of transition prior parameters was done independently for group A and group B families,
in order to see if the results agree and can be considered generalizable. In HMMER 2.2, the transition prior
consists of three separate Dirichlet densities: transitions from match, insert, and delete states. We varied the
parameters for each density separately while keeping the other two constant. In 21 of the families in both
group A and group B, none of the true positives were detected above the MER cutoff no matter the setting
of the transition prior. We chose not to include these families in the analysis, which basically just removes
a constant factor from the MER calculations. The results are shown as six contour plots (Figs. 4—6), one
for each Dirichlet density and group. The MERS values are presented as a function of the ratio and sum
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FIG. 5. Discrimination as a function of oy and agy keeping all other a-values at default values.
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FIG. 6. Discrimination as a function of app and apm keeping all other a-values at default values.

of «-values. A dark area in the contour plots represents a poorly discriminating region (high MERS) while
a light area is discriminating well (low MERS), as indicated by the shading scale bar next to each plot. In
each of the figures, the maximum likelihood estimated set of «-values is marked with an asterisk.

Match transitions

Here, only anzg and ayp were varied, while oy was Kept fixed as it is the overwhelmingly dominating
transition from match states. The optimal white area in Fig. 4 is to the right of the asterisk, indicating that
a 15-fold higher ratio avi/amp would increase the performance of HMMER 2.2, compared to the ML
prior. The sum am1 4+ amp does influence the performance, but this could partly be due to that the relative
importance of oy shifts as the sum amr + amp is changed.

Insert transitions

The values oq1 and oqp were varied in this set of runs (Fig. 5). In the parameter region explored, the
importance of the parameter change is less than was the case for the match transitions (see the scale of
the shading bar). A threshold exists in the amm/on plot. For amm/an < 1, there is a vast area in which
performance is almost unchanged, but when the ratio exceeds 1, the performance deteriorates. The ML
prior is not optimal and would gain from a decreased ratio oy /oq1, although not much. The sum oy + o
seems to be of little importance for the performance.

Delete transitions

Here, the a-values governing transitions from delete states were varied (Fig. 6), and we observed the
biggest impact on the MERS. The contour plots show optimal performance for values of the ratio app/apm
in the region 0.3—1. The ML prior has a much higher value of this ratio (about four times) and an MERS
considerably higher than the best choice of transition prior possible. Once again, the sum app + apm
seems to be of little importance.

Overall, we find a reasonably good agreement between families in group A and B, suggesting that the
optimal areas in the parameter space are not specific to a set of families but are generally valid. One
should, of course, ignore small deviations and draw conclusions only from the larger trends.

An empirical prior for maximum discrimination

Having extracted the optimal parameters for the three individual densities in the prior, we then combined
these to form a new prior that should be close to the point of optimal discrimination. Because each density
was optimized using suboptimal settings in the other settings, however, the new prior did not discriminate
as well as the optimal points in the previous runs. We therefore performed additional optimization of the
delete transitions using the new parameters for the match and insert priors to generate a prior that is very
close to the achievable optimum. We call this prior the empirical maximum discrimination (EMD) prior.
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Although there is some arbitrariness in defining the maximum, we consider EMD an appropriate name
as it highlights the way the prior was estimated. We tried to optimize the prior further by the Downhill
Simplex Method iterative optimizing procedure with an initial guess based on the runs we had performed,
but this did not yield significantly better discrimination.

Using the EMD prior increases the HMM’s discrimination considerably compared to the ML prior.
Could it be that the ML prior got stuck in a local minimum when it was estimated? This is not the case.
The NLL (Equation 6), which is minimized in the estimation process, is significantly higher (worse) for
the EMD prior than for the ML prior (Table 1). Another possibility we considered was whether using
a weighting scheme when generating the count vectors would affect the estimation of the ML prior.
For instance, using the Blosum62 weighting scheme in hAmmbuild could perhaps give an ML prior very
different from the ML prior we get using unweighted counts. However, this possibility was also ruled out
(Table 1).

Our test was based on setting a cutoff for each family to minimize the number of false positives and
false negatives, and this number is the minimum error rate for that family using a specific prior. This is
an approach in which all misclassifications are valued equally, and perhaps this is not always what we
want. In case we are mainly focusing on sensitivity, we would, for instance, choose a lower cutoff level.
Would the EMD prior in such a case still do better than the ML prior? We have analyzed this by counting
the number of false positives as a function of false negatives for all families in group A and group B. In
practice, we went through the ranked list of log-odds scores for each family and counted the number of
false positives for each level of false negatives and then summed them for each group. The results show
that for all levels of false positives accepted we get a lower number of false negatives using the EMD
prior than when using the ML prior (Fig. 7). The EMD prior is thus more sensitive than the ML prior for
all levels of specificity.

Prior versus counts

When an HMM is built from an alignment of few sequences, the importance of having a good prior is
high. If there are many sequences in the alignment, the prior will be less important. To see how well these
statements hold, we split our results for delete state transitions into two sets: one set of all families with
< 20 training sequences and a second set of all families with >= 20 training sequences. Fixing app + opm
to 1, we plotted the MERS against app/apm for both sets. The results confirmed the statements (Fig. 8).
The set with few training sequences is much more dependent on the choice of transition prior. A poor
choice of transition prior is thus especially detrimental when having few training sequences.

DISCUSSION

We have evaluated the settings of transition priors in HMMER 2.2 using data from Pfam 7.0. Dirichlet
densities are the default way of modeling transition priors and are considered to perform well, which is
why we have used them here. Intuitively, a maximum likelihood estimate of the parameters describing the
density from a huge set of data can be thought to give good results because it models the background
rate of transitions. However, we have shown that using a reasonably extensive set of data divided into
two groups to avoid overfitting, this is not the case based on a criterion of optimizing the discrimination
between false positives and false negatives. The setting of transition priors that we suggest increases the
discrimination of HMMs considerably compared to the ML prior.

Why does the ML prior perform so poorly? One reason could be that the HMM architecture may have
inherent biases as it is based on assumptions of proteins. Using regularization would then counteract this.
This aside, we think the reason is that there are actually two distributions of transitions, one positive
and one negative, that need to be considered. The positive distribution describes transitions observed in
multiple alignments of related sequences and also the distribution of transitions one would expect to see
in homologous sequences aligned to the alignment. This is our ML distribution. The negative distribution,
on the other hand, describes the distribution one would expect to see in noise sequences aligned to the
multiple alignment. Although the likelihood for deletions and insertions would probably be higher in the
negative distribution, the two distributions would surely intersect to a certain degree. Some noise sequences
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FIG. 7. Number of false positives for each level of accepted false negatives. The numbers are summed up for all
included families in the respective group.

will therefore get good scores also using the ML prior. A discriminative prior distribution should be one
that well describes the positive distribution but at the same time is different from the negative distribution.
The EMD prior that we have presented here is an approximation of such a distribution.

Judging from our systematic parameter searches, this seems reasonable. The high ratio app/apm of
the ML prior compared to our EMD prior is most crucial for the difference in performance. This high
ratio makes HMMs relatively prone to deletions, which allows them to model noise sequences using long
deletions without reducing the score much. Using a prior that restricts allowance for deletions, we get a
much better separation between true members and noise. This effect of restricting parameter space is most
important when few training sequences are available (Fig. 8) and therefore little information about the
protein family being modeled. When the number of training sequences increases, the importance of the
transition prior decreases, but the EMD prior is still the best choice.

The default transition prior in HMMER 2.2 is supposed to have been estimated using maximum likeli-
hood. Nevertheless, the default prior performs very well in our test: much better than the ML priors that
we estimated and not much worse than the EMD prior. We tried to reproduce the default transition prior
with the maximum likelihood estimation method applied to both seed and full alignments from several
versions of Pfam ranging from 1.0 to 7.2, but failed. The details of how the default transition prior in
HMMER was estimated could not be produced (G. Mitchison, personal comm.). We noticed that in all
our ML estimates am1 < amp and app > opwM, but in the default prior and in the EMD prior these
relationships are inverted. Our guess is therefore that the default prior comes from an ML estimate using
an early unreleased version of Pfam and that the parameter pairs (omr1, @mp) and (oepp, @pm) might have

Group A Group B

All families

All families

7]
- A [id 30 | - .
Families with <20 - g Fam_llies with < 20
training sequences

MERS
8

10 / """""""""" 10 e
Families with > 20 Families with > 20
training sequences ‘ ) training sequences
2 K1 o 1 0 2 -1 -0 e
10 10 /i 10 10 10 w I w io
T 1Y) %pp/%m

FIG. 8. Good prior information is most important when the number of training sequences is low. Keeping app +
apm = 1, we changed the app/apmM and calculated the MERS. All other parameters were kept as default. The result
for all families is shown by the bold line and is split into two sets based on the number of training sequences: > 20
and < 20.
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been accidentally inverted. Luckily, this adds considerably to the discrimination of profile HMMs built by
HMMER. We noted that the inverses of the ami/amp and app/apm ratios produced by ML estimates
using data generated with the —fast option in Ammbuild came very close to these ratios in the default prior.
The —fast option makes hmmbuild employ simple heuristics when choosing model architecture, given the
alignment. By default, a maximum a posteriori algorithm with a special architecture prior is used which
produces more match states than —fast does. It therefore seems likely that some simple early method was
used for choosing model architecture and that the (oM, omp) and (epp, @pm) values were swapped.

Many other benchmarking tests have used the SCOP database rather than Pfam and have defined positive
and negative examples based on the superfamily classification. This has the advantage that also the negative
sequences are real protein sequences. However, the SCOP database is biased to globular proteins, and as
we wanted a more general test we decided to use Pfam. We realize that our choice to use randomly picked
and reversed sequences as negative sequences could be criticized. However, preliminary results using the
SCOP database and defining positive and negative sequences based on the superfamily classification are
in agreement with what we have presented here.

We have shown that estimating a transition prior in the form of a Dirichlet density estimated by maximum
likelihood does not give good discrimination in HMM searches. The empirical procedure we have used
instead is time consuming and not theoretically well founded. Today, it is not clear to us how this could be
done more effectively but ad hoc methods like ours are often unavoidable. One way perhaps worth trying
would be to still use maximum likelihood but a more sophisticated approach. To this end, there are at least
two alternatives. One could try to model the transition prior using a Dirichlet mixture of a certain number
of densities. A mixture can account for the fact that different columns in the alignment perform best with
different prior information, while a simple density uses the same prior information for all columns. Another
approach would be to estimate Dirichlet densities for different structural environments (e.g., helix-to-helix,
buried-to-buried etc.) using structurally marked-up alignments. When building the profile HMM, either a
mixture of the structurally based densities could be used or a single one, then again based on the mark-up.
As the frequency of transitions varies a lot in different structural regions of alignments, this could perhaps
augment the performance.
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