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Abstract Transmembrane prediction methods are generally
benchmarked on a set of proteins with experimentally veri¢ed
topology. We have investigated if the accuracy measured on
such datasets can be expected in an unbiased genomic analysis,
or if there is a bias towards ‘easily predictable’ proteins in the
benchmark datasets. As a measurement of accuracy, the con-
cordance of the results from ¢ve di¡erent prediction methods
was used (TMHMM, PHD, HMMTOP, MEMSAT, and
TOPPRED). The benchmark dataset showed signi¢cantly high-
er levels (up to ¢ve times) of agreement between di¡erent meth-
ods than in 10 tested genomes. We have also analyzed which
programs are most prone to make mispredictions by measuring
the frequency of one-out-of-¢ve disagreeing predictions.
0 2002 Federation of European Biochemical Societies. Pub-
lished by Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most common analyses of a newly determined
protein sequence is prediction of transmembrane (TM) seg-
ments. The presence of such segments suggests a membrane-
bound location and is therefore a major determinant of the
protein’s function. Several programs exist for predicting TM
segments and prediction accuracies have been reported as high
as 79% correct topology [1^3].
Given the high reported accuracy of these programs, they

are potentially of great value for annotating predicted protein
sequences in completely sequenced genomes. But how high is
the prediction accuracy in a set of genomic sequences? It is
likely that the test sets of carefully studied proteins are sub-
stantially easier to predict correctly than a complete genomic
set. Benchmark datasets used for assessing accuracy of TM
prediction programs also make the problem simpler by only
including proteins with one or more TM segments. There is
furthermore a bias towards proteins with a small number of
segments because the experimental data is generally less am-
biguous.
We cannot directly assess the accuracy of TM predictions in

genomic data, due to the unavailability of classed material.
However, we can get a measure of the reliability of the pre-
dictions by looking at the correlation between multiple pre-
diction methods. A previous study of TM prediction method

consensus carried out on a subset of the Escherichia coli ge-
nome indicates that the reliability of a TM segment prediction
correlates positively with the number of disparate methods
producing the same result [4].

2. Materials and methods

We used ¢ve methods, TMHMM version 2.0 [5,6], PHDhtm ver-
sion 2.1 [7,8], HMMTOP version 1.0 [9], MEMSAT version 1.8 [10],
and TOPPRED2 version 1.0 [11,12]. We applied some restrictions in
how we ran two of the methods. We were running PHDhtm in single-
sequence mode. And when running MEMSAT we were counting to-
pologies with negative score as a non-TM protein prediction.
The methods predicted TM segments for all proteins in the genomic

datasets of four eukaryotes: Homo sapiens (45374 proteins), Droso-
phila melanogaster (14100 proteins), Caenorhabditis elegans (19101
proteins) and Saccharomyces cerevisiae (6334 proteins), two Archaea:
Sulfolobus tokodaii (2826 proteins) and Pyrococcus abyssi (1765 pro-
teins), three Gram-positive bacteria: Bacillus subtilis (4100 proteins),
Streptococcus pneumoniae (2043 proteins) and Staphylococcus aureus
(2624 proteins), and one Gram-negative bacteria: E. coli (4289 pro-
teins), as well as in a dataset with 160 well-characterized TM proteins
(we will refer to this dataset as the benchmark dataset hereon). The
genomes were downloaded from ftp://ftp.ncbi.nih.gov/ on the 2nd
of May 2002. The benchmark dataset is the one used as training set
for TMHMM[6], and is available at http://www.binf.ku.dk/krogh/
TMHMM/. Highly overlapping datasets have been used for training
and benchmarking other methods. The datasets were run in the con-
dition they where downloaded, and no preprocessing step to scale
away signal peptides or other features was applied.
As a measure of correlation between di¡erent methods we count

how many methods agree on their prediction. We de¢ne agreeing
predictions such that all TM segments overlap with at least one res-
idue with another TM segment prediction, and that the orientation of
the loops (cytoplasmic side or not) of all the predictions coincide.
Speci¢cally we observe the largest consensus group (LCG), i.e. the
group with the largest number of methods. In cases when this de¢-
nition is not unique, when all methods disagree or if we have a 2-2-1
grouping, we select the LCG to be the consensus group containing
TMHMM. If TMHMM happened to be the single method in a 2-2-1
con¢guration, the group containing HMMTOP is selected as the
LCG.

3. Results and discussion

The output from the ¢ve methods was analyzed and the
number of methods in the LCG was extracted for the each
gene in the di¡erent datasets (Fig. 1). There are two ways to
use the predictions: either by counting only predictions with
one or more TM segments, or including also ‘empty’ predic-
tions with no TM segments. Since the benchmark dataset only
contains proteins with one or more TM segments, we ¢rst
only considered such predictions (Fig. 1a), while a comparison
between the di¡erent genomic predictions using also zero-TM
segment predictions is shown in Fig. 1b. The percentages of
concordance are much higher when including zero-TM seg-
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ment predictions, suggesting that such predictions are rela-
tively reliable.
It is clear from Fig. 1a that the methods produce a more

correlated prediction when working on the benchmark dataset
than when working on the genomic datasets. As we argued
above, the correlation can be seen as an indication of the
individual methods’ reliability, and we therefore must lower
our expectations when working with these methods on ge-

nomic data. Especially for eukaryotic data the method con-
cordance is much lower than for the benchmark dataset. It is
however hard to quantify a more realistic accuracy ¢gure than
the ones reported in previous studies. On one hand one could
argue that this kind of correlation study would tell more
about the worst performing method than the best. It could
on the other hand be argued that the di¡erence between
benchmark and genomic dataset performance is even larger

Fig. 1. Method concordance (a) when only counting proteins where the LCG predicts one or more TM segments and (b) when examining all
of the proteins of the examined dataset. ‘Benchmark’ refers to the dataset with well-characterized TM proteins. The Benchmark dataset does
not contain any proteins without TM segments, hence it is excluded from panel b.
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in reality, due to a built-in correlation of the methods stem-
ming from their training on similar datasets. In any case, we
have shown that the accuracy reported on the benchmark set
is highly in£ated. The level of ‘all methods agree’ was 28% for
the benchmark set, and between 5% and 20% for the genomic
datasets. In general, the concordance was lowest for eukary-
otes and archaea, and highest for bacteria.
We looked for explanations for this observation and have

examined the length distribution of the hydrophobic regions
in the predicted TM segments and the distribution of the

predicted number of TM segments for di¡erent species but
could not ¢nd any trends that would explain the di¡erence
(data not shown). The discrepancy could simply be an e¡ect
of higher diversity of TM protein structure in eukaryotes and
archaea than in bacteria.
We also investigated the methods concordance for di¡erent

numbers of predicted TM segments. The results are shown
both for all genomes together (Fig. 2a) or separated by taxo-
nomic groups (Fig. 2b). It is worth noting that the downwards
trend is sometimes broken at certain numbers of predicted

Fig. 2. Method concordance as a function of the number of TM segments for all the examined genomes together (a) and for di¡erent taxonom-
ic groups (b). In panel b, ranges of the number of TM segments predicted by the LCG are used. For instance, ‘Gram+4-6’ means the genes
predicted to contain 4^6 TM segments in the examined Gram-positive genomes. Note that the benchmark set does not contain any proteins
without TM regions.
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TM segments, e.g. at four, seven or 12 segments. This could
be an e¡ect of having had more such examples when training
the method, or simply that such topologies are easier to pre-
dict.
Are there large di¡erences in the reliability of the individual

methods? A comparison between the methods was made by
analyzing proteins from all of the examined genomes that had
an LCG size of for four out of ¢ve methods, and by determin-
ing which method was the ‘odd one out’, or singled out (Fig.
3). If the errors of the methods were to be treated as indepen-
dent of each other, the number of times a method appears as
singled out would be strongly correlated to the number of
errors the method makes. However, as mentioned above there
is a common bias for the examined methods and we have to
see this measurement as a rough indication of the number of
errors. One clear conclusion that can be drawn from the re-
sults is that TMHMM is the most selective method for avoid-
ing false positive predictions. In only one out of the 15615
genes having an LCG with no segments was TMHMM
singled out. Overall, TOPPRED is by far most frequently
singled out while TMHMM is the least singled out method.
PHDhtm is frequently singled out for large numbers of TM
segments.
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Fig. 3. Singled out (single disagreeing) method when the four other methods agree both in total (Sum) and as a function of the number of TM
segments in the LCG. Note the absence of TMHMM as singled out when the LCG has no TM segments. This can be seen as an indication
that TMHMM has a higher selectivity than the other methods, i.e. it is more restrictive in classifying a protein as a TM protein compared to
the other methods.
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