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Abstract

Motivation: The initial step in many orthology inference methods is the computationally demand-

ing establishment of all pairwise protein similarities across all analysed proteomes. The quadratic

scaling with proteomes has become a major bottleneck. A remedy is offered by the Hieranoid algo-

rithm which reduces the complexity to linear by hierarchically aggregating ortholog groups from

InParanoid along a species tree.

Results: We have further developed the Hieranoid algorithm in many ways. Major improvements

have been made to the construction of multiple sequence alignments and consensus sequences.

Hieranoid version 2 was evaluated with standard benchmarks that reveal a dramatic increase in the

coverage/accuracy tradeoff over version 1, such that it now compares favourably with the best

methods. The new parallelized cluster mode allows Hieranoid to be run on large data sets in a

much shorter timespan than InParanoid, yet at similar accuracy.

Contact: mateusz.kaduk@scilifelab.se

Availability and Implementation: Perl code freely available at http://hieranoid.sbc.su.se/.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Orthologs are genes that were duplicated upon speciation. This dis-

tinguishes them from paralogs which are genes duplicated within

the same species after or before speciation (Jensen, 2001). Paralogs

of the type inparalogs duplicated after speciation, and can simultan-

eously be orthologs with respect to a gene in a different species

(O’Brien et al., 2005). Conversely, outparalogs are paralogs that

come from a duplication predating the speciation event; for ex-

ample, HA1 cannot be considered orthologs to WB1. The evolution-

ary relationship between inparalogs and outparalogs is depicted in

Figure 1.

An important and challenging topic in bioinformatics is to distin-

guish inparalogs from outparalogs in order to infer real orthologs

from a vast amount of data. The inference of orthologs is important

because many proteins related by orthology often retain similar bio-

logical functions which can be preserved over species (Gabald�on

and Koonin, 2013; Remm et al., 2001). By definition orthologs were

duplicated only upon speciation, so the phylogeny directly reflects

their lineage. Paralogs are members of multi-gene families and in the

case of missing copies their use in inference of relationships between

species may be misleading (Baldauf, 2003). Thus, orthologs are suit-

able and important candidates for inferring phylogenetic trees.

Recent advances in whole-genome sequencing bring an oppor-

tunity to infer orthology between many species. Thus, algorithms

that can determine orthologs accurately and quickly are needed to

make sense of the growing sequence databases. Orthology methods

can be categorized as either tree-based or graph-based

(Sonnhammer et al., 2014). Despite algorithmic differences, most

methods rely on exhaustive all-versus-all sequence similarity search-

ing. Although these can be parallelized or speeded up algorithmic-

ally (Wittwer et al., 2014), the quadratically growing search space is

outpacing the growth in computational power. What is needed is an

algorithm that scales linearly with the growth of sequence data.

To achieve this, Hieranoid was introduced (Schreiber and

Sonnhammer, 2013; Wittwer et al., 2014). It can be seen as a hybrid

between tree and graph based approaches. A species tree is utilized

as a guide tree which reduces the number of proteome comparisons

to N-1 for N proteomes. This also naturally infers groups of ortho-

logs in a hierarchical structure. However, Hieranoid version 1 was

only benchmarked with Orthobench (Trachana et al., 2011) but this
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was later found to not be very specific as it does not penalize errone-

ous orthology assignments such as outparalogs in recently diverged

species. It also was not possible to run the algorithm in parallel on a

compute cluster which severely limited its throughput.

Proper benchmarking of Hieranoid with the Quest for Orthologs

benchmarks revealed that both its coverage and accuracy were far

worse than InParanoid and other top-performing methods. We

therefore analysed its algorithmic components and identified a num-

ber of shortcomings. These have been mended in Hieranoid 2, which

now yields reproducible results with coverage and accuracy similar

to InParanoid. Here we present the novel aspects of the Hieranoid 2

algorithm and assess its quality by standardized benchmarks for

orthology inference methods.

2 Used software

To approximate an evolutionary distance between protein se-

quences, BLAST version 2.2.18 (Camacho et al., 2009) was used.

Although it is not as accurate as BLAST, it is possible to use

USEARCH as an alternative to save time (Edgar, 2010). MUSCLE

version 3.8.31 (Edgar, 2004) was used to build multiple alignments.

The Neighbour-Joining tree in Supplementary Figure S1 was built

with Belvu (Sonnhammer and Hollich, 2005) using Scoredist dis-

tances. Ortholog pairs were extracted from protein trees using tree

reconciliation in the ETE3 (Huerta-Cepas et al., 2016) package.

3 Benchmark

Results were evaluated based on standard orthology benchmarks at

http://orthology.benchmarkservice.org established by Quest for

Orthologs community (Altenhoff et al., 2016; Dessimoz et al.,

2012). It is based on the 66 reference proteomes QfO_2011-04

[http://www.ebi.ac.uk/reference_proteomes]. This benchmark

allows us to directly compare the performance of Hieranoid 2 to

other methods, as well as analysing the impact of algorithmic

variants. Since the Hieranoid output is a tree with ortholog assign-

ments at many hierarchical levels, pairs of orthologs were obtained

by parsing out each pair of species separately and finding their last

common ancestor (LCA) to resolve all their orthologs below that

point for entry into the benchmark service which requires flat pair-

wise orthologs.

3.1 Species discordance test
The species discordance test (Altenhoff et al., 2016) used in the

benchmark is based on the premise that the topology of the species

tree should agree with the tree of orthologs. Given a species tree,

orthologs are sampled for all species from predicted orthologs, after

which a multiple alignment is built and a phylogenetic tree is

inferred. This is attempted 50 000 times. The number of successfully

sampled trees can be seen as a proxy of coverage; alternatively the

number of predicted orthologs can be used. To estimate accuracy,

the trees are compared with a curated species tree to calculate the

average Robinson–Foulds distance (avgRF) or the average fraction

incorrect trees.

3.2 Ranking
Total rank, as explained in Figure 2 was introduced as a combined

performance indicator of orthology methods. The individual axes

may represent coverage (horizontal) and error rate (vertical). The

axis values are ranked first; these ranks are summed up and ranked

again to yield the new rank, which gives equal weight to both axes.

If several methods share the same final rank, they are all assigned

the average rank of the span.

4 The Hieranoid algorithm

The algorithm requires a fully bifurcated species tree. Each leaf rep-

resents a proteome corresponding to all proteins of a species and

should only include the longest protein sequence for each gene.

Fig. 1. Evolutionary relationships between orthologs, inparalogs and outparalogs

Fig. 2. Total rank is the rank based on both the horizontal and vertical axes (Color version of this figure is available at Bioinformatics online.)
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Internal nodes in the species tree represent higher-level ‘meta-spe-

cies’ and will aggregate all the ortholog groups in the nodes below.

Hieranoid iterates orthology inference hierarchically across the

entire species tree (Fig. 3). It starts by searching for sequence similar-

ities between the two closest leaves in the tree. BLAST or

USEARCH can then be used to collect sequence similarities. The se-

cond stage infers ortholog groups using InParanoid, and the third

builds multiple sequence alignments (MSAs) for each ortholog

group. The fourth stage then builds consensus sequences or profiles

from each MSA. After this the algorithm loops back to the beginning

and applies the four stages to the next closest pair in the species tree.

If this involves an internal node, the previously obtained consensus

sequences or profiles will be used.

4.1 Similarity search
The homology data are converted to the InParanoid input format

from the used homology detection tools such as BLAST or

USEARCH which search for matches between parts of the sequence

and may assign high scores for only small regions of the whole se-

quence. Highly similar fragments might be related to conserved do-

mains, but such similarity does not necessarily reflect evolutionary

similarity of the whole protein. Therefore, the default InParanoid

overlap criteria were used to prevent the algorithm from taking into

account results based on too short matches. The following criteria

need to be fulfilled for the match to be accepted. First, the distance

from the first to the last aligned residue must be at least 50% of ei-

ther sequence. Second, the length of the aligned regions must be at

least 25% of the length of either sequence. Finally, if multiple max-

imal segment pairs (MSPs) are present, they need to be in the same

order on both sequences, and the overlap between each consecutive

MSP must not exceed 5%.

4.2 Inferring ortholog groups
Once the initial similarities are established, either with BLAST or

USEARCH, results in the BLAST format are passed over to the

InParanoid module, where the clustering is performed according to

the original InParanoid algorithm (Remm et al., 2001). Inferred

clusters will henceforth be referred as ortholog groups, and in such

groups only pairs of proteins from different species may be con-

sidered as orthologs.

4.3 Multiple sequence alignment of ortholog groups
To capture the sequence diversity in an ortholog group, a multiple

sequence alignment (MSA) is built. The MSA attempts to align all

the sequences simultaneously, so that each column of multiple se-

quences results is in the optimal arrangement of residues. The MSA

in Hieranoid 1 was not built from all sequences that belong to the

original species, but Hieranoid 2 parts from this behaviour. The

MSA is rebuilt on each branch when the ortholog group is extended

by new proteins using all putative sequences from the updated

ortholog groups (rather than relying on consensus sequences). This

guarantees that any decision on representative residue within a MSA

column may be corrected if more sequences are added in the process

of adding new orthologs to ortholog group.

4.4 Building consensus sequences
Once the sequences for each ortholog group are aligned, a consensus

sequence is calculated. One can optionally use profiles instead, but

searching these against each other is prohibitively computationally

demanding. The consensus building was originally taken from

BioPerl 1.6.9 (Stajich et al., 2002) but is now replaced by custom

routine. In Hieranoid 1, a consensus residue was only produced if an

amino acid had a frequency of 50% or higher, leading to shrinkage

of the consensus sequence. In Hieranoid 2, only positions with more

than 50% gaps are removed. For other positions, the consensus resi-

due is picked that has the highest score against all residues in the col-

umn, using the BLOSUM62 substitution matrix (Pearson, 2002). If

several amino acids are tied, the first in alphabetical order is picked.

4.5 Further iterations
Internal nodes are used as the algorithm proceeds, rather than

leaves, to infer orthologs. The set of all sequences at an internal

node represents a pseudo-species for all species below that point in

the species tree. When two pseudo-species meet at a node, searching

is performed with consensus sequences versus consensus-sequences

from corresponding pseudo-species. However, once the results are

clustered, the algorithm returns to the previously described stages of

building MSA (updating it in this case) and building new consensus

sequences from all original sequences. For this stage, consensus se-

quences are unfolded into original sequences. When the algorithm

finishes at the root node, all intermediate results are combined into

the final hierarchical groups of orthologs.

4.6 Parallel mode
This new feature of Hieranoid 2 adds the ability of Hieranoid to be

run in parallel. New cluster mode or fixed multi-core mode com-

bined with the hierarchical approach further strengthens Hieranoid

position in applications that demand solving large scale multi-

species orthology inference problems. For the 66 proteomes in study

we ran Hieranoid 2 on an Intel Xeon E5-2623 3.0 GHz processor

with 48 cores. This took 2.5 real clock core days and 2.3 user core

days.

5 Results

5.1 Benchmark performance
Hieranoid 2 was run on the 66 reference proteomes that the Quest

for Orthologs benchmarks are based on. It produced a total of

40 700 ortholog group trees, with 7.8 species and 12.3 sequences

per ortholog tree on average. The largest ortholog tree had 6973 se-

quences from 14 species; 2 ortholog trees included all 66 species,

and 3096 ortholog trees included at least half of all species. The

ortholog trees were parsed into 6 349 666 ortholog pairs, which

were uploaded to the orthology benchmark service. For comparison,

we also ran the code with the old Hieranoid 1 algorithmic compo-

nents but with patches for efficient computation, as the 1.0 release

was not parallelized. This only inferred 4 817 251 ortholog pairs.

The benchmark service contains several benchmarks. The

‘generalized species tree discordance benchmark’ tests whether

orthologs sampled for a set of species produce a tree that agrees

with the known species tree (Altenhoff and Dessimoz, 2009). We

show this benchmark for Eukaryota as an example in Figure 5 be-

cause it separates the methods well, but other benchmarks give a

similar picture, see Supplementary Materials. The complete results

for Hieranoid 2 are available at the benchmark service for public

viewing. We note that Hieranoid 2 is at a similar level of accuracy as

Fig. 3. Workflow of the Hieranoid algorithm. Important improvements in ver-

sion 2 have been made to the last two stages

1156 M.Kaduk and E.Sonnhammer

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/33/8/1154/2918134
by Mathematics Library user
on 10 January 2018

Deleted Text: &hx201D;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: see 
Deleted Text: .
Deleted Text: s
Deleted Text: &hx201D;
Deleted Text: s
Deleted Text: &hx201D;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw774/-/DC1


InParanoid but has lower coverage in Figure 5. Hieranoid 2 has a

total rank of 3 for coverage measured as sampled trees and 2.5 for

number of orthologs, after InParanoid, RBH/BBH, and OMA

GETHOGs. All methods show a tradeoff between accuracy and

coverage. The goal is to maximize both, i.e. to come as close as pos-

sible to the bottom right corner. Hieranoid 2 is not dominated or

shadowed by any other method in this respect, i.e. it lies on the

‘Pareto frontier’. This suggests that it strikes a unique and competi-

tive balance between accuracy and coverage.

Hieranoid 1 which is also marked in Figure 5 is placed among the

poorer performing methods. The transition from rank 9.5 to 3 (Fig.

5A) and 4.5 to 2.5 (Fig. 5B) shows that Hieranoid 2 is a substantial im-

provement compared to version 1. Hieranoid 1 using USEARCH, the

version that was previously published, is also marked and shows con-

siderably lower coverage than the Blast-using option.

The ‘generalized species tree discordance benchmark’ comprises

four taxonomic ranges, each having four plots combining two accur-

acy and two coverage measures (Supplementary Materials). As these

tests give different total rankings we wanted to measure how the

methods perform overall. All 16 plots were summarized by a median

total rank across all tests for each method. The best median rank of

2 across all plots was obtained by InParanoid, the second best by

phylomeDB with 4.75, and the third best by Hieranoid 2 (Blast)

with 5.5 (Supplementary Table S1). In many tests, Hieranoid’s per-

formance is not much worse than InParanoid’s, and in fact

Hieranoid achieves much better total rank in all Vertebrata tests.

5.2 Benchmarking individual improvements
The following results reflect only the difference between changes

introduced to the algorithm. The benchmark results from

InParanoid are used here as a reference. The benchmark perform-

ance of Hieranoid, which does not require all one-to-one compari-

sons, should ideally approach the results of the all one-to-one

method InParanoid.

Figure 4 shows the effect on benchmark performance of two major

Hieranoid algorithm improvements: the new consensus sequence build-

ing (CS2) and the new routine for building multiple sequence align-

ments (MSA2). In combination they achieve the performance that

comes closest to InParanoid’s. The CS2 code appears to make a bigger

difference in coverage than the MSA2 code. It can also be observed

that the original code (CS1–MSA1) performs better than the single

modification CS1–MSA2. This is actually not surprising, as the flaws

of CS1 should become more deleterious when using the full alignment.

Also, the improvement of CS2 only shows in combination with MSA2,

as the MSA1 flaws affect CS1 and CS2 about equally.

We note that the performance improvement of the combined

MSA2 and CS2 modifications when using BLAST, i.e. between

‘Hieranoid 1 Blast’ and ‘Hieranoid 2 Blast’ in Figure 5, is roughly

the same as the improvement from USEARCH to BLAST, i.e. be-

tween ‘Hieranoid 1 Usearch’ and ‘Hieranoid 1 Blast’ in Figure 5.

This suggests that although USEARCH may seem attractive because

it is much faster than BLAST, its considerably lower coverage makes

it less suitable for orthology inference.

5.3 Comparison to InParanoid
InParanoid has previously been shown to keep both false positives

and false negatives at low rates (Figure 5; Altenhoff and Dessimoz,

2009; Chen et al., 2007; Hulsen et al., 2006) and is widely used for

inferring orthologs between pairs of species. As Hieranoid employs

InParanoid during its hierarchical process, it is of interest to com-

pare the results of both approaches. To get an overview, the relative

increase/decrease of orthologs between them is plotted for each spe-

cies pair in the 66-species benchmark dataset in Figure 6.

In general, Hieranoid 2 finds a lower amount of orthologs per

species pair than InParanoid. The most extreme example of this is

the species pair closest to the top left corner of Figure 6, correspond-

ing to Danio rerio versus mouse (Mus musculus) where Inparanoid

infers 3.5 times more orthologs than Hieranoid. It is mainly due to a

huge ortholog group of olfactory receptors that in InParanoid has

50 D. rerio and 864 mouse proteins, generating 43 200 ortholog

pairs. This is the highest number of ortholog pairs from one ortho-

log group in the entire InParanoid dataset. The corresponding ortho-

log tree for the same species pair in Hieranoid contains 66 D. rerio

and 1095 mouse proteins, of which 32 and 863 (98%) are the same

as in the InParanoid ortholog group, respectively. However,

Hieranoid has in this case used the context of other species to infer

that many duplications happened before the D. rerio/mouse split,

and all proteins arising this way are counted as outparalogs, i.e. do

not produce any ortholog pairs. Because of this, Hieranoid’s ortho-

log tree, although much larger than InParanoid’s ortholog group,

yielded only 2234 ortholog pairs in 5 ‘ingroup’ clades after D. rerio/

mouse speciation nodes. The main reasons for the much lower num-

ber of ortholog pairs in Hieranoid are that 28 D. rerio proteins are

placed as outparalogs in the tree, and that the ingroup clade with

most mouse proteins (649) contained only 1 D. rerio protein.

A

B

Fig. 4. Generalized species tree discordance benchmark for eukaryota, reveal-

ing the performance of Hieranoid 2 and 1 as well as a range of other orthol-

ogy inference methods. avgRF: average Robinson–Foulds distance between

inferred and true species tree (proxy for accuracy). The number of sampled

trees or uploaded orthologs on the x-axis is a proxy for coverage (Color ver-

sion of this figure is available at Bioinformatics online.)
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The evolution of hugely duplicated families such as this one is

often difficult to reconstruct confidently. With hundreds of similarly

diverged proteins, assignment of duplication nodes relative to speci-

ation nodes becomes rather imprecise, and orthology assignments

will vary substantially between methods. For comparison we built a

Neighbour-Joining tree of all 6973 sequences in the Hieranoid

ortholog tree. Overall, this gave a similar pattern as Hieranoid with

many duplications preceding the D. rerio/mouse split, which yielded

1001 ortholog pairs between them in three ingroup clades after D.

rerio/mouse speciation nodes. The tree, restricted to these two spe-

cies, is provided as Supplementary Figure S1. The main reasons for

the relatively low number of ortholog pairs are that 50 D. rerio pro-

teins were placed as outparalogs, and that the ingroup clade with

most mouse proteins (967) only contained 1 D. rerio protein. This

suggests that the number of ortholog pairs between D. rerio and

mouse was severely overestimated by InParanoid for this family, and

that Hieranoid gives a more realistic picture.

On the other hand, Hieranoid 2 found more orthologs than

InParanoid for 5% of the species pairs. The most extreme case of

this corresponds to the species pair closest to the bottom right corner

of Figure 6, Branchiostoma floridae versus Nematostella vectensis,

where Hieranoid found about three times more orthologs than

InParanoid. The average number of proteins per ortholog group for

this pair in Hieranoid 2 is 3.95, while in InParanoid it is 2.79. We

found that the main source of Hieranoid ortholog pairs was an

ortholog group with 718 proteins from B. floridae and 61 from N.

vectensis. The biggest overlapping ortholog group in InParanoid has

only 74 members. None of the proteins in this group has a known

function, yet many contain zinc finger domains (Sonnhammer et al.,

1997). Many members of this family are unlikely to pass the cover-

age thresholds in InParanoid because they are fragments (36% of

the sequences) or have large deletions and insertions in a large dis-

ordered region. However, because Hieranoid builds up multiple

alignments iteratively, it can compensate for these lost regions and

still infer them as orthologs.

6 Discussion

The second version of Hieranoid bundles a lot of improvements

compared to version 1. We have improved multiple alignnment and

consensus sequence building to make Hieranoid achieve substan-

tially higher coverage of ortholog detection. Thanks to the new clus-

ter mode, Hieranoid can now be parallelized on compute cluster.

Algorithmic changes were motivated by the inspection of sequence

alignments and consensus sequences, and validated by standardized

orthology benchmarking. We show that two major changes in the

core algorithm are responsible for best overall improvement. The

combination of CS2 and MSA2 increases the coverage of ortholog

detection to a level that approaches InParanoid while maintaining a

similar accuracy. The new version of Hieranoid now ranks among

the top performing methods in the benchmark. We have also made

dozens of minor code improvements, e.g. related to thread syn-

chronization in multithreaded mode, data parsing and handling of

large alignments.

A major benefit of Hieranoid is its linearly scaling compute time

which makes it an excellent tool for applications with large multi-

species sets of proteomes. In general, ab initio orthology inference

methods have a computational complexity that grows quadratically

with the number of proteomes analyses, and with the availability of

thousands of proteomes this has become a major stumbling block.

This means that orthology inference can be considered a Big Data

problem (Sonnhammer et al., 2014), and that Hieranoid will be an

important contribution to keep up with future growth of proteome

data.

Fig. 6. Total number of ortholog pairs per species pair found by Hieranoid 2

and InParanoid. The Spearman correlation coefficient is 0.95. The line indi-

cates the diagonal with the same number of orthologs for both methods. The

two most extreme outliers analysed in the text are the points in top left and

bottom right corners (Color version of this figure is available at

Bioinformatics online.)

A

B

Fig. 5. Generalized species tree discordance benchmark of individual algorith-

mic modifications in Hieranoid. The lowest average Robinson–Foulds dis-

tance to (avgRF) is the best accuracy, while the number of sampled trees (A)

or orthologs (B) represents the coverage
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Another benefit is that Hieranoid places predicted orthologs in a

phylogenetic context by providing trees with hierarchical groups of

orthologs. Although these trees are not regular evolutionary trees as

produced by other methods, e.g. in PylomeDB, they do reflect

inferred orthology/paralogy relations. Because the ortholog trees

may contain thousands of sequences it is often not feasible to make

a full phylogenetic tree reconstruction of the members. They are

topological trees, and instead of branch lengths representing se-

quence evolution, orthology confidence values are stored. Hieranoid

2 can use profiles instead of consensus sequences. Profiles can en-

code more information than a consensus sequence, hence they are

expected to yield better accuracy and coverage (Patthy, 1987;

Sonnhammer and Kahn, 1994). However, they are vastly slower,

which in practise precludes them from being used instead of consen-

sus sequences for all-versus-all similarity searching. Although profile

searching against sequences has been accelerated (Wheeler and

Eddy, 2013), this is not yet available for profile-profile searching

needed by Hieranoid.

It is possible in Hieranoid to use profiles not for searching but

just for scoring. Here candidate homologs are first found using the

consensus sequence, but profiles are used to score multiple align-

ments against them. However, as this decreases the number of false

positives and false negatives by just a small fraction (Schreiber and

Sonnhammer, 2013), this mode was excluded from this evaluation.

The Quest for Orthologs benchmark service is a valuable re-

source for the orthology community, and is likely to become the

standard to assess accuracy of new algorithms. One concern might

be that developers are over-optimising their methods to these bench-

marks. However, it is probably not possible to do this for all bench-

marks at the same time. In the case of Hieranoid, we have not used

the benchmarks to optimize any parameters, only to detect problem

areas which were then improved based on sound principles and

logic. We foresee that the benchmarks will also be useful for spot-

ting problems with other algorithms in a similar way.
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